This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353172 #79 Oct 31 2022 05:36:19 %S A353172 2,3,4,5,3,7,4,9,5,6,3,13,5,5,9,17,3,10,4,12,11,6,3,25,7,10,15,10,3, %T A353172 11,4,33,9,5,13,20,5,8,5,24,3,15,4,9,25,6,3,49,5,14,9,11,3,19,7,20,12, %U A353172 6,3,22,7,7,11,65,11,18,4,10,5,25,3,40,5,5,19,16 %N A353172 a(n) is the least k > 1 such that Omega(n) = Omega(n mod k), where Omega = A001222. %C A353172 It appears that a(m) = m*k/p if m = p*2^n ... . Are these formulas related to some well-known sequence of rational numbers? %H A353172 David A. Corneth, <a href="/A353172/b353172.txt">Table of n, a(n) for n = 1..10000</a> %F A353172 a(A029744(n)) = A029744(n) + 1. %F A353172 a(A003627(n)) = 3. %F A353172 a(A000040(n)) = A095925(n). %F A353172 a(A077065(n)) = 6. For n > 2. %F A353172 If a(n) = 10, then n mod 10 is in most cases 8 and seldom 6. %F A353172 a(m) = m*3/5 if m = 5*2^n or m = 15. This formula is valid for all positive n because (5*2^n) mod (5*2^n)*(3/5) = 2^(n+1). If the sequence of solutions does not create powers of two in the modulo operation, it will be of finite length. See next two formulas: %F A353172 a(m) = m*3/11 if m = 11, 22, 33 or 66. %F A353172 a(m) = m*4/43 if m = 43*2^n for n < 4. This series of solutions terminates because of the next formula which replaces the powers of two: %F A353172 a(m) = m*41/(43*2^4) if m = 43*2^4*2^n. This formula is valid for all positive n. %F A353172 a(m) = m*5/9 if m = 9*2^n or m = 27 or 45. This formula is valid for all positive n. %F A353172 For each k = a(p) if k < p and gcd(k, p) = 1 such a formula, of the form a(m) = m*k/p, if m = p*2^n ..., can be developed. %e A353172 a(10) = 6 because 10 = 5*2 and 10 mod 6 = 4 = 2*2. %o A353172 (PARI) %o A353172 a(n) = my(k=2); while(bigomega(n) != bigomega(max(n%k,1)), k++); k %o A353172 (Python) %o A353172 from itertools import count %o A353172 from sympy.ntheory.factor_ import primeomega %o A353172 def A353172(n): %o A353172 a = primeomega(n) %o A353172 for k in count(2): %o A353172 if (m := n % k) > 0 and primeomega(m) == a: %o A353172 return k # _Chai Wah Wu_, Jun 20 2022 %Y A353172 Cf. A000040, A001222, A003627, A029744, A061142, A077065, A095925. %K A353172 nonn,easy %O A353172 1,1 %A A353172 _Thomas Scheuerle_, Apr 28 2022