This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353184 #18 May 01 2022 02:09:32 %S A353184 1,1,2,6,30,180,1260,10080,93240,1015560,12146400,158004000, %T A353184 2226193200,34162128000,565750785600,10034584560000,190820565936000, %U A353184 3845407181616000,81995523626016000,1844123531009760000,43689721287532320000,1086745683839175360000 %N A353184 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)). %F A353184 a(0) = 1; a(n) = Sum_{k=1..floor(sqrt(n))} (k^2-1)! * binomial(n,k^2) * a(n-k^2). %t A353184 a[0] = 1; a[n_] := a[n] = Sum[(k^2 - 1)! * Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 22, 0] (* _Amiram Eldar_, Apr 30 2022 *) %o A353184 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2))))) %o A353184 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), (j^2-1)!*binomial(i, j^2)*v[i-j^2+1])); v; %Y A353184 Cf. A006456, A007840, A353180. %K A353184 nonn %O A353184 0,3 %A A353184 _Seiichi Manyama_, Apr 29 2022