This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353195 #48 Jul 25 2024 14:25:57 %S A353195 2,5,32,286,3038,35870,454880,6073311,84302270,1206291308,17687468032, %T A353195 264593385735,4024945917314,62101640836955,969921269646560, %U A353195 15309505269479942,243897741785306000,3917478255634975373,63381933612745811168,1032176017566352265886,16907912684907490828614 %N A353195 Coefficients of the open mirror map of P2. %C A353195 The integers a[k] (k>0) defining this sequence are the coefficients of the open mirror map M(Q)=sum(k>0)a[k]Q^k, which is defined as follows: %C A353195 Let F(z) = Sum_(k>0)((-1)^k*(3k)!/(k*(k!)^3)*z^k) be the holomorphic part of the logarithmic solution to the Picard-Fuchs type differential equation for P2 as defined by Lerche-Mayr (cf. A006480). %C A353195 The inverse of the power series Q(z)=z*exp(F(z)) is defined as the closed mirror map z(Q) (c.f. A229451 and A061401). %C A353195 The holomorphic part of the logarithmic solution to the open Picard-Fuchs equation for P2 is given by (1/3)*F(z). %C A353195 The open mirror map M(Q) is obtained by inserting the closed mirror map z(Q) into the power series exp(1/3*F(z)). %C A353195 The series M(Q) originally appeared as the open mirror map relating Aganagic-Vafa branes on the canonical bundle of P2 ("local P2") and its mirror. %C A353195 The coefficients of the series M(Q) can be interpreted as curve counts in different ways: %C A353195 (1) a[d] is the open Gromov-Witten invariant (counts of holomorphic disks) of moment fibers of local P2, of class d*H (H = hyperplane class) and winding w=1. %C A353195 (2) a[d] is the closed local Gromov-Witten invariant of local F1 (F1 = Hirzebruch surface = blowup of P2) of class d*H-C (H = pullback of hyperplane class, C = exceptional line). %C A353195 (3) a[d] is the relative (or log) Gromov-Witten invariant of the pair (F1,D) (D = smooth anticanonical divisor) of class d*H-C. %C A353195 (4) a[d] is the 2-marked log Gromov-Witten invariant R_p,q of the pair (P2,D) (D = smooth anticanonical divisor) of class d*H, intersecting D in two points with multiplicity p and q, the former point is fixed. %C A353195 (5) W = y + Sum_(d>0) a[d]*t^(3d)*y^(-3d+1) is the proper Landau-Ginzburg model of (P2,D) defined via broken lines. %C A353195 There is no known recursion or closed formula for this sequence. %C A353195 Conjecture: a(n) = (3*n - 1)*A364973(n). - - _Kyler Siegel_, Jul 06 2024 %H A353195 M. Aganagic, A. Klemm, and C. Vafa, <a href="https://arxiv.org/abs/hep-th/0105045">Disk Instantons, Mirror Symmetry and the Duality Web</a>, Z. Naturforsch. A57 (2002) 1-28; arXiv:hep-th/0105045, 2011. %H A353195 M. Aganagic and C. Vafa, <a href="https://arxiv.org/abs/hep-th/0012041">Mirror Symmetry, D-Branes and Counting Holomorphic Discs</a>, arXiv:hep-th/0012041, 2000. %H A353195 M. Carl, M. Pumperla, B. Siebert, <a href="https://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf">A tropical view on Landau-Ginzburg Models</a> %H A353195 K. Chan, <a href="https://arxiv.org/abs/1006.3827">A formula equating open and closed Gromov-Witten invariants and its applications to mirror symmetry</a>, Pacific J. Math. 254 (2011) 275-293; arXiv:1006.3827 [math.SG], 2010-2012. %H A353195 K. Chan, S.-C. Lau, and H.-H. Tseng, <a href="https://arxiv.org/abs/1110.4439">Enumerative meaning of mirror maps for toric Calabi-Yau manifolds</a>, Adv. Math. 244 (2013) 605-625; arXiv:1110.4439 [math.SG], 2011-2013. %H A353195 M. van Garrel, T. Graber, and H. Ruddat, <a href="https://arxiv.org/abs/1712.05210">Local Gromov-Witten invariants are log invariants</a>, Adv. Math. 350, (2019), 860-876; arXiv:1712.05210 [math.AG], 2017-2019. %H A353195 T. Graber and E. Zaslow, <a href="https://arxiv.org/abs/hep-th/0109075">Open-string Gromov-Witten invariants: calculations and a mirror “theorem”</a>, Orbifolds in mathematics and physics, Contemp. Math. 310, AMS (2002), 107-121; arXiv:hep-th/0109075, 2001. %H A353195 T. Graefnitz, H. Ruddat, and E. Zaslow, <a href="https://arxiv.org/abs/2204.12249">The proper Landau-Ginzburg potential is the open mirror map</a>; arXiv:2204.12249 [math.AG], 2022. %H A353195 M. Gross and B. Siebert, <a href="https://arxiv.org/abs/1404.3585">Local mirror symmetry in the tropics</a>, Proc. Int. Congr. Math. Seoul (2014) Vol. II, 723-744; arXiv:1404.3585 [math.AG], 2014 %H A353195 S.-C. Lau, N. C. Leung, and B. Wu, <a href="https://arxiv.org/abs/1006.3828">A relation for Gromov-Witten invariants of local Calabi-Yau threefolds</a>, Math.Res. Lett. 18 (5), (2011), 943-956; arXiv:1006.3828 [math.AG], 2010. %H A353195 W. Lerche and P. Mayr, <a href="https://arxiv.org/abs/hep-th/0111113">On N = 1 Mirror Symmetry for Open Type II Strings</a>; arXiv:hep-th/0111113, 2001. %H A353195 G. Mikhalkin and K. Siegel, <a href="https://arxiv.org/abs/2307.13252">Ellipsoidal superpotentials and stationary descendants</a>, arXiv:2307.13252 [math.SG] (2023). %o A353195 (SageMath) %o A353195 def M(n): %o A353195 z,Q = var('z,Q') %o A353195 a = [var(f'a{k}') for k in range(n+1)] %o A353195 b = [0,1] + [0 for k in range(2,n+1)] %o A353195 F = sum([(-1)^k/k*factorial(3*k)/factorial(k)^3*z^k for k in range(1,n+1)]) %o A353195 zQ = Q+sum([a[k]*Q^k for k in range(2,n+1)]) %o A353195 Qz = (zQ*exp(F(zQ))).taylor(Q,0,n) %o A353195 for k in range(2,n+1): %o A353195 b[k] = a[k].substitute(solve(Qz.coefficient(Q^k).substitute([a[i]==b[i] for i in range(k)]) == 0,a[k])) %o A353195 return exp(1/3*F).substitute(z==sum([b[k]*Q^k for k in range(n+1)])).taylor(Q,0,n) %Y A353195 Cf. A006480, A229451, A061401, A364973. %K A353195 nonn %O A353195 1,1 %A A353195 _Tim Graefnitz_, Apr 29 2022