This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353196 #26 Aug 17 2025 11:17:59 %S A353196 6,60,1080,36720,2423520,315057600,81284860800,41780418451200, %T A353196 42866709330931200,87876754128408960000,360118938418219918080000, %U A353196 2950814581398894008747520000,48352047730802277227336862720000,1584496604138390624739828991334400000 %N A353196 Number of stabilizer states on n qubits. %C A353196 A stabilizer state is a quantum state on n qubits prepared by applying a series of Hadamard, CNOT, and S gates to the all-zero state. There are only a finite number of such states for any n. %H A353196 D. Gross, <a href="https://arxiv.org/abs/quant-ph/0602001">Hudson's Theorem for finite-dimensional quantum systems</a>, arXiv:quant-ph/0602001, 2006-2007. %F A353196 a(n) = 2^n*Product_{i=1..n} (2^i+1). %F A353196 a(n) = A000079(n)*A028362(n+1). %F A353196 a(n) ~ c * 2^(n*(n+3)/2) where c = Product_{k>=1} (1 + 1/2^k) = A079555. - _Amiram Eldar_, Aug 17 2025 %e A353196 For n = 1, the a(1) = 6 states are |0>, |1>, |+>, |->, |i>, and |-i>. %t A353196 Table[2^n * QPochhammer[-2, 2, n], {n, 13}] (* _Amiram Eldar_, Aug 17 2025 *) %o A353196 (Python) %o A353196 def a(n): %o A353196 ans = 2 ** n %o A353196 for i in range(1, n+1): %o A353196 ans *= 2 ** i + 1 %o A353196 return ans %o A353196 (Python) %o A353196 from math import prod %o A353196 def A353196(n): return prod((1<<i)+1 for i in range(1,n+1)) << n # _Chai Wah Wu_, Jun 20 2022 %Y A353196 Cf. A000079, A003956, A028362. %K A353196 nonn,easy %O A353196 1,1 %A A353196 _James Rayman_, Apr 29 2022