A353198 Intersection of A000404 and A024614.
13, 37, 52, 61, 73, 97, 109, 117, 148, 157, 169, 181, 193, 208, 229, 241, 244, 277, 292, 313, 325, 333, 337, 349, 373, 388, 397, 409, 421, 433, 436, 457, 468, 481, 541, 549, 577, 592, 601, 613, 628, 637, 657, 661, 673, 676, 709, 724, 733, 757, 769, 772, 793, 829, 832, 853, 873, 877
Offset: 1
Keywords
Examples
The square grid (or the Gaussian integers) can be divided into 13 parts, where the k-th part consists of grid points of the form (k + 3*n + 2*m, 2*n - 3*m) where n, m are integers. Similarly the hexagonal grid can be also divided into 13 parts, where the k-th part consists of points of the form (k + 7/2*n + m, sqrt(3)/2*n + 2*sqrt(3)*m).
Programs
-
Mathematica
Select[Intersection[ Sort[DeleteDuplicates[ Flatten[Table[i^2 + j^2, {i, 1000}, {j, 1000}]]]], Sort[DeleteDuplicates[ Flatten[Table[i^2 + i j + j^2, {i, 1000}, {j, 1000}]]]]], # <= 10000 &]
Comments