This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353228 #28 May 12 2022 15:19:33 %S A353228 1,0,0,6,12,40,540,3528,25200,263520,2741760,30048480,372794400, %T A353228 4971957120,70612686144,1076056027200,17469796780800,300562292459520, %U A353228 5468568356666880,104917700221125120,2116572758902425600,44794683422986936320,992435268252158438400 %N A353228 Expansion of e.g.f. (1 - x)^(-x^2). %H A353228 Seiichi Manyama, <a href="/A353228/b353228.txt">Table of n, a(n) for n = 0..449</a> %F A353228 a(0) = 1; a(n) = (n-1)! * Sum_{k=3..n} k/(k-2) * a(n-k)/(n-k)!. %F A353228 a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,k)|/(n-2*k)!. %F A353228 a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / exp(n). - _Vaclav Kotesovec_, May 04 2022 %t A353228 nmax = 20; CoefficientList[Series[(1-x)^(-x^2), {x, 0, nmax}], x] * Range[0, nmax]! (* _Vaclav Kotesovec_, May 12 2022 *) %o A353228 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^2))) %o A353228 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^2*log(1-x)))) %o A353228 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=3, i, j/(j-2)*v[i-j+1]/(i-j)!)); v; %o A353228 (PARI) a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, k, 1))/(n-2*k)!); %Y A353228 Cf. A066166, A351503, A351492, A353223, A353229. %K A353228 nonn %O A353228 0,4 %A A353228 _Seiichi Manyama_, May 01 2022