This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353229 #26 Jun 20 2024 14:48:32 %S A353229 1,0,0,0,24,60,240,1260,28224,241920,2181600,21621600,315342720, %T A353229 4358914560,61607407680,912518006400,15142006978560,265601118182400, %U A353229 4877947688140800,93691850626483200,1901787789077452800,40548028309147699200,904101131200045363200 %N A353229 Expansion of e.g.f. (1 - x)^(-x^3). %H A353229 Seiichi Manyama, <a href="/A353229/b353229.txt">Table of n, a(n) for n = 0..449</a> %F A353229 a(0) = 1; a(n) = (n-1)! * Sum_{k=4..n} k/(k-3) * a(n-k)/(n-k)!. %F A353229 a(n) = n! * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,k)|/(n-3*k)!. %F A353229 a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / exp(n). - _Vaclav Kotesovec_, May 04 2022 %t A353229 With[{nn=30},CoefficientList[Series[(1-x)^-x^3,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Jun 20 2024 *) %o A353229 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x)^(-x^3))) %o A353229 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x^3*log(1-x)))) %o A353229 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=4, i, j/(j-3)*v[i-j+1]/(i-j)!)); v; %o A353229 (PARI) a(n) = n!*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/(n-3*k)!); %Y A353229 Cf. A066166, A351493, A351504, A353228. %K A353229 nonn %O A353229 0,5 %A A353229 _Seiichi Manyama_, May 01 2022