This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353230 #18 May 20 2022 02:47:35 %S A353230 0,6,90,1050,11130,112266,1099098,10550826,99899514,936435786, %T A353230 8711707290,80572452714,741766408890,6803700252810,62219207836890, %U A353230 567597206875050,5167463468534010,46965976868507850,426262280218695450,3864157168469020650,34994228358927126330 %N A353230 Number of Condorcet voting profiles with three candidates and 2n-1 voters where all the choices are from {123, 231, 312}. %C A353230 All terms are multiples of 6. %H A353230 Shalosh B. Ekhad, <a href="https://sites.math.rutgers.edu/~zeilberg/tokhniot/oCondorcet3d.txt">More terms</a>. %H A353230 Rebecca Embar and Doron Zeilberger, <a href="https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/cond3.pdf">Counting Condorcet</a>. %F A353230 a(n) = ((17*n-21)*a(n-1)-(72*n-108)*a(n-2))/(n-1), with a(1) = 0, a(2) = 6. %t A353230 Table[FullSimplify[3^(2*n - 1) - 2^(n-1) * Binomial[2*n, n] * Hypergeometric2F1[1, n + 1/2, n + 1, 8/9]/3], {n, 1, 25}] (* _Vaclav Kotesovec_, May 20 2022 *) %Y A353230 Cf. A353194. %K A353230 nonn %O A353230 1,2 %A A353230 _Rebecca Embar_, May 01 2022