A352806 Orders of the finite groups PSL_2(K) when K is a finite field with q = A246655(n) elements.
6, 12, 60, 60, 168, 504, 360, 660, 1092, 4080, 2448, 3420, 6072, 7800, 9828, 12180, 14880, 32736, 25308, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 262080, 150348, 178920, 194472, 246480, 265680, 285852, 352440, 456288, 515100, 546312, 612468, 647460
Offset: 1
Keywords
Examples
a(6) = 504 since A246655(6) = 8, so a(6) = 8*(8^2-1)/gcd(2,8-1) = 504. a(7) = 360 since A246655(7) = 9, so a(7) = 9*(9^2-1)/gcd(2,9-1) = 360.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
- Groupprops, Projective special linear group
Crossrefs
Programs
-
PARI
[(q+1)*q*(q-1)/gcd(2,q-1) | q <- [1..200], isprimepower(q)]
Formula
|PSL(2,q)| = q*(q^2-1)/2 if q is odd, q*(q^2-1) otherwise.
|PSL(2,q)| = |PGL(2,q)|/gcd(2,q-1) = |SL(2,q)|/gcd(2,q-1).
In general, |PSL(n,q)| = |PGL(n,q)|/gcd(n,q-1) = |SL(n,q)|/gcd(n,q-1).
Comments