cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353249 Primes that are the sum of the cubes of four primes, not necessarily distinct.

This page as a plain text file.
%I A353249 #9 Apr 08 2022 13:57:21
%S A353249 89,149,367,383,503,601,1709,2221,2357,4001,4937,5171,6599,6883,7019,
%T A353249 7237,7243,7583,9091,10177,11261,11807,14747,15923,16693,17431,24413,
%U A353249 24767,25673,26539,27059,30169,32587,34739,43517,48731,51031,51347,53201,53323,53699,54133,59617
%N A353249 Primes that are the sum of the cubes of four primes, not necessarily distinct.
%H A353249 Zhichun Zhai, <a href="https://arxiv.org/abs/2201.07346">Problems related to Waring-Goldbach problem involving cubes of primes</a>, arXiv:2201.07346 [math.GM], 2022. See Table 1 p. 3 but some terms are missing.
%e A353249 89 is a term because 2^3 + 3^3 + 3^3 + 3^3 = 89.
%e A353249 15923 is a term because 2^3 + 13^3 + 19^3 + 19^3 = 15923.
%p A353249 q:= proc(n, t) option remember; `if`(n=0, is(t=0), t>0 and
%p A353249       ormap(p-> isprime(p) and q(n-p^3, t-1), [$2..iroot(n, 3)]))
%p A353249     end:
%p A353249 select(x-> isprime(x) and q(x, 4), [$1..60000])[];  # _Alois P. Heinz_, Apr 08 2022
%t A353249 seq[max_] := Module[{s = Select[Range[Floor@Surd[max, 3]], PrimeQ]}, Select[Union[Plus @@@ (Tuples[s, 4]^3)], # <= max && PrimeQ[#] &]]; seq[60000] (* _Amiram Eldar_, Apr 08 2022 *)
%o A353249 (PARI) isok(p) = {if (isprime(p) && (p > 24), my(P=primes(primepi(sqrtn(p-24, 3)+1))); for (i=1, #P, for (j=i, #P, for (k=j, #P, for (n=k, #P, if (P[i]^3 + P[j]^3 + P[k]^3 + P[n]^3 == p, return (1)););););););}
%Y A353249 Primes in A346917.
%Y A353249 Cf. A123597.
%K A353249 nonn
%O A353249 1,1
%A A353249 _Michel Marcus_, Apr 08 2022