This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353263 #24 Apr 10 2022 09:53:28 %S A353263 1193,1949,5639,7907,8501,10301,20101,20939,29137,30091,34403,65173, %T A353263 68567,70249,70537,76801,84163,105943,109147,116483,153247,161753, %U A353263 169943,171733,175829,180563,208589,214483,222197,224969,242483,261427,280507,313933,317327,319883 %N A353263 Primes whose square is the sum of the cubes of four primes, not necessarily distinct. %C A353263 The sum must contain 2^3, else it will be even, hence not prime. - _Michael S. Branicky_, Apr 10 2022 %H A353263 Michael S. Branicky, <a href="/A353263/b353263.txt">Table of n, a(n) for n = 1..724</a> %H A353263 Zhichun Zhai, <a href="https://arxiv.org/abs/2201.07346">Problems related to Waring-Goldbach problem involving cubes of primes</a>, arXiv:2201.07346 [math.GM], 2022. See Table 2 p. 3. Warning 85012 is a typo for 8501. %e A353263 1193 is a term because 2^3 + 29^3 + 47^3 + 109^3 = 1423249 = 1193^2. %o A353263 (PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (issquare(t, &rr) && isprime(rr), listput(v, rr)))))); v = Set(v); \\ after A346917 %Y A353263 Square roots of the intersection of A346917 and A001248. %Y A353263 Cf. A353249. %K A353263 nonn %O A353263 1,1 %A A353263 _Michel Marcus_, Apr 09 2022 %E A353263 a(11) and beyond from _Michael S. Branicky_, Apr 09 2022