cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353263 Primes whose square is the sum of the cubes of four primes, not necessarily distinct.

This page as a plain text file.
%I A353263 #24 Apr 10 2022 09:53:28
%S A353263 1193,1949,5639,7907,8501,10301,20101,20939,29137,30091,34403,65173,
%T A353263 68567,70249,70537,76801,84163,105943,109147,116483,153247,161753,
%U A353263 169943,171733,175829,180563,208589,214483,222197,224969,242483,261427,280507,313933,317327,319883
%N A353263 Primes whose square is the sum of the cubes of four primes, not necessarily distinct.
%C A353263 The sum must contain 2^3, else it will be even, hence not prime. - _Michael S. Branicky_, Apr 10 2022
%H A353263 Michael S. Branicky, <a href="/A353263/b353263.txt">Table of n, a(n) for n = 1..724</a>
%H A353263 Zhichun Zhai, <a href="https://arxiv.org/abs/2201.07346">Problems related to Waring-Goldbach problem involving cubes of primes</a>, arXiv:2201.07346 [math.GM], 2022. See Table 2 p. 3. Warning 85012 is a typo for 8501.
%e A353263 1193 is a term because 2^3 + 29^3 + 47^3 + 109^3 = 1423249 = 1193^2.
%o A353263 (PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (issquare(t, &rr) && isprime(rr), listput(v, rr)))))); v = Set(v); \\ after A346917
%Y A353263 Square roots of the intersection of A346917 and A001248.
%Y A353263 Cf. A353249.
%K A353263 nonn
%O A353263 1,1
%A A353263 _Michel Marcus_, Apr 09 2022
%E A353263 a(11) and beyond from _Michael S. Branicky_, Apr 09 2022