A353264 a(n) is the least number k such that A018804(k)/k = n.
1, 4, 15, 64, 48, 60, 144, 16384, 240, 1300, 1296, 960, 1008, 3564, 3840, 1073741824, 6000, 14580, 7056, 20800, 11520, 25500, 944784, 245760, 13104, 24948, 34560, 57024, 750000, 16380, 156816, 4611686018427387904, 102000, 364500, 46800, 233280, 134064, 174636
Offset: 1
Keywords
Examples
a(2) = 4 since A018804(4)/4 = 8/4 = 2 and 4 is the least number with this property.
References
- Dušan Djukić, Vladimir Janković, Ivan Matić, and Nikola Petrović, The IMO Compendium, A Collection of Problems Suggested for the International Mathematical Olympiads: 1959-2004, Springer, New York, 2006. See Problem 25, pp. 331, 726-727.
Links
- Dušan Djukić, Vladimir Janković, Ivan Matić, and Nikola Petrović, IMO Shortlist 2004, 2005, Problem 25, pp. 5-6, 18-19.
- R. E. Woodrow, Problem N2, The Olympiad Corner, Crux Mathematicorum, Vol. 34, No. 7 (2008), pp. 419-421.
- Index to sequences related to Olympiads.
Programs
-
Mathematica
f[p_, e_] := (e*(p - 1)/p + 1); r[n_] := Times @@ (f @@@ FactorInteger[n]); a[n_] := Module[{k = 1}, While[r[k] != n, k++]; k]; Array[a, 15]
Comments