cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353279 Triangle read by rows, a Narayana related triangle whose rows are refinements of four times the Catalan numbers (for n >= 3).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 5, 8, 5, 1, 0, 1, 8, 19, 19, 8, 1, 0, 1, 12, 41, 60, 41, 12, 1, 0, 1, 17, 81, 165, 165, 81, 17, 1, 0, 1, 23, 148, 406, 560, 406, 148, 23, 1, 0, 1, 30, 253, 910, 1666, 1666, 910, 253, 30, 1
Offset: 0

Views

Author

Peter Luschny, Apr 29 2022

Keywords

Comments

This is the third term of a sequence of generalized Narayana triangles (respectively Narayana polynomials). See A090181 for the classical case and A352687 for a discussion of the case k = 2. Many of the relations given there can be directly transferred to the present case. Here we emphasize the recurrence for the general case (see the formula section).

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  2,   1
[4] 0, 1,  3,   3,   1
[5] 0, 1,  5,   8,   5,   1
[6] 0, 1,  8,  19,  19,   8,   1
[7] 0, 1, 12,  41,  60,  41,  12,   1
[8] 0, 1, 17,  81, 165, 165,  81,  17,  1
[9] 0, 1, 23, 148, 406, 560, 406, 148, 23, 1
		

Crossrefs

Programs

  • Maple
    Q := proc(n, k) option remember; local A, B, j;
    if n <= k then return [seq(binomial(n-1, j-1), j = 0..n)] fi; # A097805
    A := [op(Q(n - 2, k)), 0, 0]; B := [op(Q(n - 1, k)), 1];
    for j from n by -1 to 3 do
        B[j] := ((B[j] + B[j-1])*(2*(n - k) + 1)
               - (A[j] - 2*A[j-1] + A[j-2])*(n - k - 1)) / (n - k + 2);
    od: B end:
    Trow := n -> Q(n, 3): for n from 0 to 9 do print(Trow(n)) od:
  • Mathematica
    Q[n_, k_] := Q[n, k] = Module[{A, B, j},
    If[n <= k, Return[Table[Binomial[n-1, j-1], {j, 0, n}]]];
    A = Join[Q[n-2, k], {0, 0}]; B = Join[Q[n-1, k], {1}];
    For[j = n, j >= 3, j--,
       B[[j]] = ((B[[j]] + B[[j-1]])*(2*(n-k)+1)-
       (A[[j]]-2*A[[j-1]]+A[[j-2]])*(n-k-1))/(n-k+2)];
    B];
    Trow[n_] := Q[n, 3];
    Table[Trow[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jul 07 2022, translated from Maple code *)
  • Python
    from functools import cache
    from math import comb
    def comp(n, k):  # compositions A097805
        return comb(n-1, k-1) if k != 0 else k**n
    @cache
    def Trow(n, k):
        if n <= k:
            return [comp(n, j) for j in range(n + 1)]
        A = Trow(n - 2, k) + [0, 0]
        B = Trow(n - 1, k) + [1]
        for j in range(n - 1, 1, -1):
            B[j] = ((B[j] + B[j - 1]) * (2 * (n - k) + 1)
                  - (A[j] - 2 * A[j - 1] + A[j - 2]) * (n - k - 1)) // (n - k + 2)
        return B
    for n in range(10): print(Trow(n, 3)) # k=1 -> A090181, k=2 -> A352687

Formula

Define Q(n, k) recursively as [A097805(n, k) for k = 0..n] if n <= k, and otherwise Q(n, k) = [(B(j) + B(j-1))*(2*(n - k) + 1) - (A(j) - 2*A(j-1) + A(j-2))*(n - k - 1)) / (n - k + 2), for j from n by -1 down to 3], where A(n) = Q(n - 2, k) '+' [0, 0] and B(n) = Q(n - 1, k) '+' [1]. a '+' b denotes the concatenation of the lists a and b. Then T(n) = Q(n, 3) is the n-th row of this triangle and the row sum equals 4*CatalanNumber(n - 2) if n >= 3.
Q(n, 1) are the rows of the Narayana triangle A090181 and Q(n, 2) the rows of A352687. It can be shown that Q(n, k)(m) >= Q(n, k + 1)(m) for k >= 1; thus A090181(n, k) >= A352687(n, k) >= T(n, k) >= Q(n, 4)(k) >= ... is an infinite weakly descending sequence for all terms of the sequence of triangles Q(n, k).