This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353283 #23 Jun 02 2022 08:31:41 %S A353283 0,0,1,1,2,2,3,4,4,5,5,6,6,8,7,9,8,10,9,12,10,13,11,15,12,16,13,18,14, %T A353283 19,15,20,16,23,17,24,18,24,19,27,20,28,21,28,22,31,23,33,24,32,25,36, %U A353283 26,37,27,36,28,41,29,42,30,40,31,45,32,47,33,44,34,50,35,51,36,48 %N A353283 Minimum number of numbers to drop to determine whether n is a prime number using the Sieve of Eratosthenes algorithm. %C A353283 Equivalent to removing all multiples of numbers from 2 to smallest divisor of n from the set [2..n]. %C A353283 There should be a simple formula. - _N. J. A. Sloane_, May 29 2022 %H A353283 Rémy Sigrist, <a href="/A353283/b353283.txt">Table of n, a(n) for n = 2..10000</a> %H A353283 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Sieve of Eratosthenes</a> %F A353283 a(2*n) = n - 1 for any n > 0. - _Rémy Sigrist_, Jun 02 2022 %e A353283 a(15) = 8 because: %e A353283 First pass: drop multiples of 2: %e A353283 2 3 x 5 x 7 x 9 x 11 x 13 x 15 %e A353283 Second pass: drop multiples of 3: %e A353283 2 3 _ 5 _ 7 _ x _ 11 _ 13 _ x %e A353283 15 was dropped so it is not prime; 8 numbers were dropped. %o A353283 (Haskell) %o A353283 f n=n-2-r[2..n] where %o A353283 r(h:t)|n`elem`t=1+r[x|x<- t,x`mod`h>0] %o A353283 |1>0=length t %o A353283 (PARI) for (n=2, #b=apply (k->if (k==1, 0, primepi(divisors(k)[2])), [1..75]), print1 (sum(k=2, n, b[k]<=b[n])-b[n]", ")) \\ _Rémy Sigrist_, Jun 02 2022 %Y A353283 Cf. A020639, A055396, A055399. %K A353283 nonn %O A353283 2,5 %A A353283 _Nicola Pesenti_, Apr 07 2022