A353285 Consider the number of divisors tau(k) of every composite k between prime p >= 3 and the next prime; if the largest tau(k) is a square, then p is in the sequence.
5, 7, 31, 97, 113, 167, 193, 199, 211, 263, 269, 277, 311, 317, 373, 383, 401, 439, 461, 509, 541, 547, 569, 593, 613, 631, 677, 701, 709, 727, 743, 757, 769, 857, 907, 941, 947, 1021, 1031, 1063, 1123, 1153, 1217, 1229, 1249, 1259, 1283, 1289, 1291, 1301, 1321, 1361
Offset: 1
Examples
97 is a term because up to the next prime 101, tau(98) = 6, tau(99) = 6, tau(100) = 9, thus the greatest tau is 9 and 9 is a square (3^2). 127 is prime but not a term because up to the next prime 131, tau(128) = 8, tau(129) = 4, tau(130) = 8, thus the greatest tau(k) is 8 and 8 is not a square.
Programs
-
Mathematica
Select[Prime[Range[2, 220]], IntegerQ[Sqrt[Max[DivisorSigma[0, Range[# + 1, NextPrime[#] - 1]]]]] &] (* Amiram Eldar, Jun 10 2022 *)
-
PARI
forprime(p=3,2000,my(v=vector(nextprime(p+1)-p-1,k,numdiv(p+k))); if(ispower(vecmax(v),2), print1(p", ")))