cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353291 Integers whose cube is the sum of the cubes of four primes, not necessarily distinct.

This page as a plain text file.
%I A353291 #17 Apr 10 2022 14:13:38
%S A353291 12,66,336,504,588,602,756,1092,1248,1470,1638,1848,2142,2184,2289,
%T A353291 2394,2772,3094,3192,3276,3885,3948,4242,4284,4368,4410,4578,4620,
%U A353291 4788,4830,4998,5166,5460,5544,5586,5670,5754,6006,6216,6552,6636,6708,6804,6930,7014
%N A353291 Integers whose cube is the sum of the cubes of four primes, not necessarily distinct.
%H A353291 Michael S. Branicky, <a href="/A353291/b353291.txt">Table of n, a(n) for n = 1..53</a>
%H A353291 Zhichun Zhai, <a href="https://arxiv.org/abs/2201.07346">Problems related to Waring-Goldbach problem involving cubes of primes</a>, arXiv:2201.07346 [math.GM], 2022. See Table 3 p. 4.
%e A353291 12 is a term because 3^3 + 3^3 + 7^3 + 11^3 = 1728 = 12^3.
%o A353291 (PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (ispower(t, 3, &rr), listput(v, rr)))))); v = Set(v);
%Y A353291 Cube roots of the intersection of A346917 and A000578.
%K A353291 nonn
%O A353291 1,1
%A A353291 _Michel Marcus_, Apr 09 2022
%E A353291 a(8) and beyond from _Michael S. Branicky_, Apr 09 2022