This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353291 #17 Apr 10 2022 14:13:38 %S A353291 12,66,336,504,588,602,756,1092,1248,1470,1638,1848,2142,2184,2289, %T A353291 2394,2772,3094,3192,3276,3885,3948,4242,4284,4368,4410,4578,4620, %U A353291 4788,4830,4998,5166,5460,5544,5586,5670,5754,6006,6216,6552,6636,6708,6804,6930,7014 %N A353291 Integers whose cube is the sum of the cubes of four primes, not necessarily distinct. %H A353291 Michael S. Branicky, <a href="/A353291/b353291.txt">Table of n, a(n) for n = 1..53</a> %H A353291 Zhichun Zhai, <a href="https://arxiv.org/abs/2201.07346">Problems related to Waring-Goldbach problem involving cubes of primes</a>, arXiv:2201.07346 [math.GM], 2022. See Table 3 p. 4. %e A353291 12 is a term because 3^3 + 3^3 + 7^3 + 11^3 = 1728 = 12^3. %o A353291 (PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (ispower(t, 3, &rr), listput(v, rr)))))); v = Set(v); %Y A353291 Cube roots of the intersection of A346917 and A000578. %K A353291 nonn %O A353291 1,1 %A A353291 _Michel Marcus_, Apr 09 2022 %E A353291 a(8) and beyond from _Michael S. Branicky_, Apr 09 2022