This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353304 #11 Apr 11 2022 20:48:44 %S A353304 1,1,1,2,1,2,1,3,2,3,1,4,1,2,2,5,1,4,1,6,3,3,1,7,2,2,3,4,1,8,1,7,2,3, %T A353304 2,9,1,2,3,12,1,7,1,6,4,3,1,12,2,6,2,4,1,7,3,7,3,2,1,19,1,3,6,11,2,8, %U A353304 1,6,2,7,1,16,1,2,4,4,2,7,1,21,5,3,1,16,3,2,3,12,1,18,3,6,2,3,2,19,1,4,4,16,1,8 %N A353304 Number of factorizations of n^2 into factors k > 1 for which A156552(k) is a multiple of three. %C A353304 Number of factorizations of the square of n into terms of A329609 that are larger than one. %H A353304 Antti Karttunen, <a href="/A353304/b353304.txt">Table of n, a(n) for n = 1..10080</a> %H A353304 Antti Karttunen, <a href="/A353304/a353304.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A353304 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A353304 a(n) = A353303(A000290(n)). %F A353304 a(p) = 1 for all primes p. %F A353304 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1. %o A353304 (PARI) %o A353304 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A353304 A353269(n) = (!(A156552(n)%3)); %o A353304 A353303(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&& %o A353304 A353269(d), s += A353303(n/d, d))); (s)); %o A353304 A353304(n) = A353303(n^2); %Y A353304 Cf. A000290, A003961, A156552, A329609, A348717, A353269, A353303. %K A353304 nonn %O A353304 1,4 %A A353304 _Antti Karttunen_, Apr 10 2022