A353315 Triangle read by rows where T(n,k) is the number of integer partitions of n with k parts on or below the diagonal (weak non-excedances).
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 2, 1, 0, 1, 2, 2, 3, 2, 1, 0, 1, 2, 3, 3, 3, 2, 1, 0, 1, 3, 4, 4, 4, 3, 2, 1, 0, 1, 3, 6, 5, 5, 4, 3, 2, 1, 0, 1, 4, 7, 8, 6, 6, 4, 3, 2, 1, 0, 1, 4, 9, 10, 9, 7, 6, 4, 3, 2, 1, 0, 1, 6, 10, 14, 12, 10, 8, 6, 4, 3, 2, 1, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 1 0 1 1 1 0 1 1 2 1 0 1 1 2 2 1 0 1 2 2 3 2 1 0 1 2 3 3 3 2 1 0 1 3 4 4 4 3 2 1 0 1 3 6 5 5 4 3 2 1 0 1 4 7 8 6 6 4 3 2 1 0 1 4 9 10 9 7 6 4 3 2 1 0 1 6 10 14 12 10 8 6 4 3 2 1 0 1 6 13 16 17 13 11 8 6 4 3 2 1 0 1 8 15 21 21 19 14 12 8 6 4 3 2 1 0 1 9 19 24 28 24 20 15 12 8 6 4 3 2 1 0 1 For example, row n = 9 counts the following partitions (empty column indicated by dot): 9 72 522 3222 22221 222111 2211111 21111111 . 111111111 54 81 621 4221 32211 321111 3111111 63 333 711 5211 42111 411111 432 3321 6111 51111 441 4311 33111 531
Links
- MathOverflow, Why 'excedances' of permutations? [closed].
Crossrefs
Programs
-
Mathematica
pgeq[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]]; Table[Length[Select[IntegerPartitions[n],pgeq[#]==k&]],{n,0,15},{k,0,n}]