This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353318 #5 May 21 2022 14:50:29 %S A353318 1,1,1,1,2,1,4,1,6,1,9,1,1,12,2,1,16,5,1,20,9,1,25,16,1,30,25,1,36,39, %T A353318 1,1,42,56,2,1,49,80,5,1,56,109,10,1,64,147,19,1,72,192,32,1,81,249, %U A353318 54,1,90,315,84,1,100,396,129,1,1,110,489,190,2,1,121,600,275,5 %N A353318 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k excedances (parts above the diagonal), zeros omitted. %e A353318 Triangle begins: %e A353318 1 %e A353318 1 1 %e A353318 1 2 %e A353318 1 4 %e A353318 1 6 %e A353318 1 9 1 %e A353318 1 12 2 %e A353318 1 16 5 %e A353318 1 20 9 %e A353318 1 25 16 %e A353318 1 30 25 %e A353318 1 36 39 1 %e A353318 1 42 56 2 %e A353318 1 49 80 5 %e A353318 1 56 109 10 %e A353318 For example, row n = 7 counts the following partitions: %e A353318 (1111111) (7) (43) %e A353318 (52) (331) %e A353318 (61) %e A353318 (322) %e A353318 (421) %e A353318 (511) %e A353318 (2221) %e A353318 (3211) %e A353318 (4111) %e A353318 (22111) %e A353318 (31111) %e A353318 (211111) %t A353318 partsabove[y_]:=Length[Select[Range[Length[y]],#<y[[#]]&]]; %t A353318 DeleteCases[Table[Length[Select[IntegerPartitions[n],partsabove[#]==k&]],{n,1,15},{k,0,n-1}],0,2] %Y A353318 Row sums are A000041. %Y A353318 Row lengths are A000194, reversed A003056. %Y A353318 Column k = 1 is A002620, reversed A238875. %Y A353318 Column k = 2 is A097701. %Y A353318 The version for permutations is A008292, opposite A123125. %Y A353318 The weak version is A115720/A115994, rank statistic A257990. %Y A353318 The version for compositions is A352524, weak A352525. %Y A353318 The version for reversed partitions is A353319. %Y A353318 A000700 counts self-conjugate partitions, ranked by A088902. %Y A353318 A001522 counts partitions with a fixed point, ranked by A352827 (unproved). %Y A353318 A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved). %Y A353318 A238352 counts reversed partitions by fixed points, rank statistic A352822. %Y A353318 Cf. A000701, A006918, A008290, A008930, A114088, A177510, A219282, A238874, A300788, A352522. %K A353318 nonn,tabf %O A353318 1,5 %A A353318 _Gus Wiseman_, May 21 2022