This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353319 #13 May 21 2022 14:54:16 %S A353319 1,1,1,2,1,2,3,4,2,1,5,4,2,7,6,2,10,6,6,15,7,7,1,18,14,7,3,26,15,11,4, %T A353319 35,17,19,6,47,24,19,11,61,33,22,18,1,80,44,28,20,4,103,54,42,25,7, %U A353319 138,60,57,31,11,175,85,58,52,15,224,112,66,64,24 %N A353319 Irregular triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k excedances (parts above the diagonal), all zeros removed. %e A353319 Triangle begins: %e A353319 1 %e A353319 1 1 %e A353319 2 1 %e A353319 2 3 %e A353319 4 2 1 %e A353319 5 4 2 %e A353319 7 6 2 %e A353319 10 6 6 %e A353319 15 7 7 1 %e A353319 18 14 7 3 %e A353319 26 15 11 4 %e A353319 35 17 19 6 %e A353319 47 24 19 11 %e A353319 61 33 22 18 1 %e A353319 80 44 28 20 4 %e A353319 For example, row n = 9 counts the following reversed partitions: %e A353319 (1134) (9) (27) (234) %e A353319 (1224) (18) (36) %e A353319 (1233) (117) (45) %e A353319 (11115) (126) (135) %e A353319 (11124) (1116) (144) %e A353319 (11133) (1125) (225) %e A353319 (11223) (2223) (333) %e A353319 (12222) %e A353319 (111114) %e A353319 (111123) %e A353319 (111222) %e A353319 (1111113) %e A353319 (1111122) %e A353319 (11111112) %e A353319 (111111111) %t A353319 partsabove[y_]:=Length[Select[Range[Length[y]],#<y[[#]]&]]; %t A353319 DeleteCases[Table[Length[Select[Reverse/@IntegerPartitions[n], partsabove[#]==k&]],{n,1,30},{k,0,n-1}],0,2] %Y A353319 Row sums are A000041. %Y A353319 Row lengths are A003056. %Y A353319 The version for permutations is A008292, opposite A123125. %Y A353319 The weak unreversed version is A115720/A115994, rank statistic A257990. %Y A353319 For fixed points instead of excedances we have A238352, rank stat A352822. %Y A353319 Column k = 0 is A238875. %Y A353319 The version for compositions is A352524, weak A352525. %Y A353319 The version for unreversed partitions is A353318. %Y A353319 A000700 counts self-conjugate partitions, ranked by A088902. %Y A353319 A001522 counts partitions with a fixed point, ranked by A352827 (unproved). %Y A353319 A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved). %Y A353319 Cf. A000701, A002620, A006918, A008290, A008930, A114088, A177510, A219282, A238874, A300788, A352522. %K A353319 nonn,tabf %O A353319 1,4 %A A353319 _Gus Wiseman_, May 21 2022