A353345 Numbers k such that the elements of the continued fractions of the harmonic means of the divisors of k and k+1 are anagrams of each other.
688126, 29900656, 35217656, 71624168, 154979487, 527560886, 871173148, 1370592266, 2461226804, 3232529461, 3232684430, 3431178214, 3471121856, 3486231973, 3527029430, 5732671200, 6258062402, 8784477355, 9334188311, 12670993089, 12707869077, 15120804392, 16317131894
Offset: 1
Keywords
Examples
688126 is a term since sequences of elements of the continued fractions of the harmonic means of the divisors of 688126 and 688127, 688126/70281 and 688127/77304, are {9, 1, 3, 1, 3, 1, 2, 9, 1, 1, 6, 8} and {8, 1, 9, 6, 3, 1, 2, 1, 3, 1, 1, 9} respectively, and they are anagrams of each other.
Programs
-
Mathematica
h[n_] := Sort[ContinuedFraction[DivisorSigma[0, n]/DivisorSigma[-1, n]]]; seq[max_] := Module[{s = {}, n = 2, c = 0, h1 = h[1], h2}, While[n < max, h2 = h[n]; If[h1 == h2, AppendTo[s, n - 1]]; h1 = h2; n++]; s]; seq[4*10^7]