cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353345 Numbers k such that the elements of the continued fractions of the harmonic means of the divisors of k and k+1 are anagrams of each other.

Original entry on oeis.org

688126, 29900656, 35217656, 71624168, 154979487, 527560886, 871173148, 1370592266, 2461226804, 3232529461, 3232684430, 3431178214, 3471121856, 3486231973, 3527029430, 5732671200, 6258062402, 8784477355, 9334188311, 12670993089, 12707869077, 15120804392, 16317131894
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2022

Keywords

Examples

			688126 is a term since sequences of elements of the continued fractions of the harmonic means of the divisors of 688126 and 688127, 688126/70281 and 688127/77304, are {9, 1, 3, 1, 3, 1, 2, 9, 1, 1, 6, 8} and {8, 1, 9, 6, 3, 1, 2, 1, 3, 1, 1, 9} respectively, and they are anagrams of each other.
		

Crossrefs

Programs

  • Mathematica
    h[n_] := Sort[ContinuedFraction[DivisorSigma[0, n]/DivisorSigma[-1, n]]]; seq[max_] := Module[{s = {}, n = 2, c = 0, h1 = h[1], h2}, While[n < max, h2 = h[n]; If[h1 == h2, AppendTo[s, n - 1]]; h1 = h2; n++]; s]; seq[4*10^7]

A353347 Numbers k such that the elements of the continued fraction of phi(k)/k and phi(k+1)/(k+1) are anagrams of each other.

Original entry on oeis.org

1287, 96074, 5600160, 18486908, 41746312, 78700687, 211818591, 346666215, 535185325, 600248114, 617086359, 682116194, 972901517, 1326113558, 1397946770, 1404159416, 1785588903, 2090593128, 2286664100, 2349999964, 2396173329, 3154287487, 4029358361, 5401346573
Offset: 1

Views

Author

Amiram Eldar, Apr 15 2022

Keywords

Examples

			1287 is a term since the sequences of elements of the continued fractions of phi(1287)/1287 = 80/143 and phi(1288)/1288 = 66/161, {0, 1, 1, 3, 1, 2, 2, 2} and {0, 2, 2, 3, 1, 1, 1, 2} respectively, are anagrams of each other.
		

Crossrefs

Programs

  • Mathematica
    r[n_] := Sort[ContinuedFraction[EulerPhi[n]/n]]; seq[max_] := Module[{s = {}, n = 2, c = 0, r1 = r[1], r2}, While[n < max, r2 = r[n]; If[r1 == r2, AppendTo[s, n - 1]]; r1 = r2; n++]; s]; seq[6*10^6]
Showing 1-2 of 2 results.