This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353362 #9 Apr 18 2022 17:48:58 %S A353362 1,1,1,2,1,1,1,2,2,2,1,2,1,1,1,3,1,2,1,3,2,2,1,2,2,1,2,2,1,3,1,3,1,2, %T A353362 1,4,1,1,2,4,1,2,1,3,2,2,1,3,2,3,1,2,1,2,2,2,2,1,1,4,1,2,3,4,1,3,1,3, %U A353362 1,2,1,4,1,1,2,2,1,2,1,5,3,2,1,4,2,1,2,4,1,5,2,3,1,2,1,3,1,2,2,5,1,3,1,2,3 %N A353362 Number of divisors d of n for which A156552(d) is a multiple of 3. %H A353362 Antti Karttunen, <a href="/A353362/b353362.txt">Table of n, a(n) for n = 1..65537</a> %H A353362 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A353362 a(n) = Sum_{d|n} A353269(d). %F A353362 a(n) = A000005(n) - A353361(n). %F A353362 a(p) = 1 for all primes p. %F A353362 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1. %o A353362 (PARI) %o A353362 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A353362 A353269(n) = (!(A156552(n)%3)); %o A353362 A353362(n) = sumdiv(n,d,A353269(d)); %Y A353362 Inverse Möbius transform of A353269. %Y A353362 Cf. A000005, A003961, A156552, A348717, A353303, A353304, A353361. %Y A353362 Cf. also A353352. %Y A353362 Differs from A353332 for the first time at n=30, where a(30) = 3, while A353332(30) = 2. %K A353362 nonn %O A353362 1,4 %A A353362 _Antti Karttunen_, Apr 15 2022