cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353369 Sum of A103391 ("even fractal sequence") and its Dirichlet inverse.

This page as a plain text file.
%I A353369 #8 Apr 18 2022 17:49:20
%S A353369 2,0,0,4,0,8,0,4,4,8,0,4,0,12,8,9,0,0,0,12,12,16,0,16,4,12,0,14,0,12,
%T A353369 0,16,16,8,12,36,0,24,12,20,0,0,0,24,4,28,0,24,9,12,8,38,0,56,16,30,
%U A353369 24,20,0,34,0,36,-8,32,12,-8,0,60,28,36,0,20,0,24,8,44,24,52,0,44,28,16,0,74,8,48,20,44,0,52
%N A353369 Sum of A103391 ("even fractal sequence") and its Dirichlet inverse.
%H A353369 Antti Karttunen, <a href="/A353369/b353369.txt">Table of n, a(n) for n = 1..16384</a>
%F A353369 a(n) = A103391(n) + A353368(n).
%F A353369 For n > 1, a(n) = -Sum_{d|n, 1<d<n} A103391(d) * A353368(n/d).
%o A353369 (PARI)
%o A353369 up_to = 65537;
%o A353369 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
%o A353369 A003602(n) = (n/2^valuation(n, 2)+1)/2; \\ From A003602
%o A353369 A103391(n) = if(1==n,1,(1+A003602(n-1)));
%o A353369 v353368 = DirInverseCorrect(vector(up_to,n,A103391(n)));
%o A353369 A353368(n) = v353368[n];
%o A353369 A353369(n) = (A103391(n)+A353368(n));
%Y A353369 Cf. A003602, A103391, A353368.
%Y A353369 Cf. also A349135, A353367.
%K A353369 sign
%O A353369 1,1
%A A353369 _Antti Karttunen_, Apr 18 2022