cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353385 Irregular triangle T(n,k) with row n listing A051037(j) not divisible by 60 such that A352219(j) = n.

This page as a plain text file.
%I A353385 #10 Apr 21 2022 09:15:51
%S A353385 1,2,3,4,5,6,10,12,15,20,30,8,9,16,18,24,25,36,40,45,48,50,72,75,80,
%T A353385 90,100,144,150,200,225,400,450,27,32,54,64,96,108,125,135,160,192,
%U A353385 216,250,270,288,320,375,432,500,576,675,750,800,864,1000,1125,1350,1600
%N A353385 Irregular triangle T(n,k) with row n listing A051037(j) not divisible by 60 such that A352219(j) = n.
%C A353385 All terms in A051037 are products T(n,k)*60^j, j >= 0.
%C A353385 When expressed in base 60, T(n,k) does not end in zero, yet 1/T(n,k) is a terminating fraction, regular to 60.
%C A353385 The first 11 terms are the proper divisors of 60.
%C A353385 For these reasons, the terms may be called sexagesimal "proper regular" numbers.
%D A353385 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chapter IX: The Representation of Numbers by Decimals, Theorem 136. 8th ed., Oxford Univ. Press, 2008, 144-145.
%H A353385 Michael De Vlieger, <a href="/A353385/b353385.txt">Table of n, a(n) for n = 0..10250</a> (rows n = 1..40, flattened)
%H A353385 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sexagesimal.html">Sexagesimal</a>
%H A353385 Wikipedia, <a href="http://en.wikipedia.org/wiki/Regular_number">Regular number</a>.
%F A353385 Row 0 contains the empty product, thus row length = 1.
%F A353385 For n > 0, length of row n = 12(n-1) + 10 = A017641(n-1).
%e A353385 For row w, plot terms m = 2^x * 3^y * 5^z at (x,y,z). Rows are labeled below the figures parenthetically for clarity. The x axis points toward the bottom right, the y axis to the bottom left, and the z axis upward. In the plot, we mark terms from previous rows by ".", and use "*" to show the origin, that is, the empty product 1:
%e A353385                                                    125
%e A353385                                                 375   250
%e A353385                                              1125   750   500
%e A353385                                          3375  2250        1000
%e A353385                                             6750              2000
%e A353385                          25                          .           4000
%e A353385                       75    50                    .     .           8000
%e A353385                   225   150   100              .     .     .
%e A353385                      450         200      675     .           .
%e A353385                                     400     1350                 .
%e A353385          5                .                          .            800
%e A353385      15    10          .     .                    .     .           1600
%e A353385          30    20   45     .     .              .     .     .
%e A353385                       90          40      135     .           .
%e A353385                                       80      270                 .
%e A353385 1         *                *                          *            160
%e A353385        3     2          .     .                    .     .            320
%e A353385           6     4    9     .     .              .     .     .
%e A353385             12         18     .     8       27     .     .     .
%e A353385                           36    24    16       54     .     .     .
%e A353385                              72    48            108     .     .    32
%e A353385                                144                  216     .    96    64
%e A353385                                                        432   288   192
%e A353385                                                           864   432
%e A353385                                                             1728
%e A353385 (0)      (1)              (2)                        (3)
%e A353385 The terms in row w are sorted, hence row 1 has {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}.
%t A353385 Block[{t, s = DeleteCases[Sort[Flatten[Table[{2^a* 3^b * 5^c, Max[Ceiling[a/2], b, c]}, {a, 0, Log2[#]}, {b, 0, Log[3, #/(2^a)]}, {c, 0, Log[5, #/(2^a*3^b)]}], 2]] &[60^3], _?(Mod[First[#], 60] == 0 &)]}, #[[1 ;; 2 + LengthWhile[Rest@ Differences[Length /@ #], # == 12 &]]] &@ Map[s[[#, 1]] &, Values@ PositionIndex[s[[All, -1]]]]] // Flatten
%Y A353385 Cf. A017641, A051037, A352219.
%K A353385 nonn,easy,base,tabf
%O A353385 0,2
%A A353385 _Michael De Vlieger_, Apr 15 2022