cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353389 Create the sequence of all positive integers > 1 that are prime or whose prime shadow (A181819) is a divisor that is already in the sequence. Then remove all the primes.

Original entry on oeis.org

9, 36, 125, 225, 441, 1089, 1260, 1521, 1980, 2340, 2401, 2601, 2772, 3060, 3249, 3276, 3420, 4140, 4284, 4761, 4788, 5148, 5220, 5580, 5796, 6660, 6732, 7308, 7380, 7524, 7569, 7740, 7812, 7956, 8460, 8649, 8892, 9108, 9324, 9540, 10332, 10620, 10764, 10836
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
Said differently, these are nonprime numbers > 1 whose prime shadow is a divisor that is either a prime number or a number already in the sequence.

Examples

			The initial terms and their prime indices:
     9: {2,2}
    36: {1,1,2,2}
   125: {3,3,3}
   225: {2,2,3,3}
   441: {2,2,4,4}
  1089: {2,2,5,5}
  1260: {1,1,2,2,3,4}
  1521: {2,2,6,6}
  1980: {1,1,2,2,3,5}
		

Crossrefs

The first term that is not a perfect power A001597 is 1260.
Without the recursion we have A325755 (a superset), counted by A325702.
Before removing the primes we had A353393.
These partitions are counted by A353426 minus one.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A182850 and A323014 give frequency depth, counted by A225485 and A325280.
A325131 lists numbers relatively prime to their prime shadow.

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]];
    Select[Range[2,2000],suQ[#]&&!PrimeQ[#]&]