This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353391 #6 May 16 2022 17:23:46 %S A353391 1,1,1,1,2,1,3,1,1,4,5,7,9,11,15,22,38,45,87,93 %N A353391 Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted. %e A353391 The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14): %e A353391 (9) (A) (B) (C) (D) (E) %e A353391 (333) (2233) (141122) (2244) (161122) (2255) %e A353391 (121122) (3322) (221123) (4422) (221125) (5522) %e A353391 (221121) (131122) (221132) (151122) (221134) (171122) %e A353391 (221131) (221141) (221124) (221143) (221126) %e A353391 (231122) (221142) (221152) (221135) %e A353391 (321122) (221151) (221161) (221153) %e A353391 (241122) (251122) (221162) %e A353391 (421122) (341122) (221171) %e A353391 (431122) (261122) %e A353391 (521122) (351122) %e A353391 (531122) %e A353391 (621122) %e A353391 (122121122) %e A353391 (221121221) %t A353391 yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&&yosQ[Length/@Split[y]]; %t A353391 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yosQ]],{n,0,15}] %Y A353391 The non-recursive version is A353390, ranked by A353402. %Y A353391 The non-recursive consecutive version is A353392, ranked by A353432. %Y A353391 The non-recursive reverse version is A353403. %Y A353391 The unordered version is A353426, ranked by A353393 (nonprime A353389). %Y A353391 The consecutive version is A353430. %Y A353391 These compositions are ranked by A353431. %Y A353391 A003242 counts anti-run compositions, ranked by A333489. %Y A353391 A011782 counts compositions. %Y A353391 A329738 counts uniform compositions, partitions A047966. %Y A353391 A114901 counts compositions with no runs of length 1. %Y A353391 A169942 counts Golomb rulers, ranked by A333222. %Y A353391 A325676 counts knapsack compositions, ranked by A333223. %Y A353391 A325705 counts partitions containing all of their distinct multiplicities. %Y A353391 A329739 counts compositions with all distinct run-length. %Y A353391 Cf. A005811, A032020, A103295, A114640, A165413, A181591, A242882, A324572, A325702, A333755, A351013, A353401. %K A353391 nonn,more %O A353391 0,5 %A A353391 _Gus Wiseman_, May 15 2022