This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353393 #15 Mar 10 2025 12:26:10 %S A353393 2,3,5,7,9,11,13,17,19,23,29,31,36,37,41,43,47,53,59,61,67,71,73,79, %T A353393 83,89,97,101,103,107,109,113,125,127,131,137,139,149,151,157,163,167, %U A353393 173,179,181,191,193,197,199,211,223,225,227,229,233,239,241,251 %N A353393 Positive integers m > 1 that are prime or whose prime shadow A181819(m) is a divisor of m that is already in the sequence. %C A353393 We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12. %H A353393 Robert Israel, <a href="/A353393/b353393.txt">Table of n, a(n) for n = 1..10000</a> %F A353393 Equals A353389 U A000040. %e A353393 The terms together with their prime indices begin: %e A353393 2: {1} %e A353393 3: {2} %e A353393 5: {3} %e A353393 7: {4} %e A353393 9: {2,2} %e A353393 11: {5} %e A353393 13: {6} %e A353393 17: {7} %e A353393 19: {8} %e A353393 23: {9} %e A353393 29: {10} %e A353393 31: {11} %e A353393 36: {1,1,2,2} %p A353393 pshadow:= proc(n) local F,i; %p A353393 F:= ifactors(n)[2]; %p A353393 mul(ithprime(i),i=F[..,2]) %p A353393 end proc: %p A353393 filter:= proc(n) local s; %p A353393 if isprime(n) then return true fi; %p A353393 s:= pshadow(n); %p A353393 n mod s = 0 and member(s,R) %p A353393 end proc: %p A353393 R:= {}: %p A353393 for i from 2 to 2000 do if filter(i) then R:= R union {i} fi od: %p A353393 sort(convert(R,list)); # _Robert Israel_, Mar 10 2025 %t A353393 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; %t A353393 suQ[n_]:=PrimeQ[n]||Divisible[n,red[n]]&&suQ[red[n]]; %t A353393 Select[Range[2,200],suQ[#]&] %Y A353393 The first term that is not a prime power A000961 is 36. %Y A353393 The first term that is not a prime or a perfect power A001597 is 1260. - Corrected by _Robert Israel_, Mar 10 2025 %Y A353393 The non-recursive version is A325755, counted by A325702. %Y A353393 Removing all primes gives A353389. %Y A353393 These partitions are counted by A353426. %Y A353393 The version for compositions is A353431. %Y A353393 A001222 counts prime factors with multiplicity, distinct A001221. %Y A353393 A003963 gives product of prime indices. %Y A353393 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353393 A124010 gives prime signature, sorted A118914. %Y A353393 A130091 lists numbers with all distinct prime exponents, counted by A098859. %Y A353393 A181819 gives prime shadow, with an inverse A181821. %Y A353393 A325131 lists numbers relatively prime to their prime shadow. %Y A353393 Cf. A000005, A000040, A047966, A182850, A316413, A316428, A325756, A353394, A353395, A353399. %K A353393 nonn %O A353393 1,1 %A A353393 _Gus Wiseman_, May 15 2022