This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353395 #4 May 20 2022 08:51:05 %S A353395 1,3,5,11,15,17,26,31,33,41,51,55,58,59,67,78,83,85,86,93,94,109,123, %T A353395 126,127,130,146,148,155,157,158,165,174,177,179,187,191,196,201,202, %U A353395 205,211,241,244,249,255,258,274,277,278,282,283,284,286,290,295,298 %N A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k. %C A353395 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A353395 We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12. %F A353395 A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)). %e A353395 The terms together with their prime indices begin: %e A353395 1: {} 78: {1,2,6} 158: {1,22} %e A353395 3: {2} 83: {23} 165: {2,3,5} %e A353395 5: {3} 85: {3,7} 174: {1,2,10} %e A353395 11: {5} 86: {1,14} 177: {2,17} %e A353395 15: {2,3} 93: {2,11} 179: {41} %e A353395 17: {7} 94: {1,15} 187: {5,7} %e A353395 26: {1,6} 109: {29} 191: {43} %e A353395 31: {11} 123: {2,13} 196: {1,1,4,4} %e A353395 33: {2,5} 126: {1,2,2,4} 201: {2,19} %e A353395 41: {13} 127: {31} 202: {1,26} %e A353395 51: {2,7} 130: {1,3,6} 205: {3,13} %e A353395 55: {3,5} 146: {1,21} 211: {47} %e A353395 58: {1,10} 148: {1,1,12} 241: {53} %e A353395 59: {17} 155: {3,11} 244: {1,1,18} %e A353395 67: {19} 157: {37} 249: {2,23} %e A353395 For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126. %t A353395 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A353395 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; %t A353395 Select[Range[100],Times@@red/@primeMS[#]==red[#]&] %Y A353395 The prime terms are A006450. %Y A353395 The LHS (prime shadow) is A181819, with an inverse A181821. %Y A353395 The RHS (product of shadows) is A353394, first appearances A353397. %Y A353395 This is a ranking of the partitions counted by A353396. %Y A353395 Another related comparison is A353399, counted by A353398. %Y A353395 A001222 counts prime factors with multiplicity, distinct A001221. %Y A353395 A003963 gives product of prime indices. %Y A353395 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353395 A124010 gives prime signature, sorted A118914, product A005361. %Y A353395 A130091 lists numbers with distinct prime exponents, counted by A098859. %Y A353395 A324850 lists numbers divisible by the product of their prime indices. %Y A353395 Numbers divisible by their prime shadow: %Y A353395 - counted by A325702 %Y A353395 - listed by A325755 %Y A353395 - co-recursive version A325756 %Y A353395 - nonprime recursive version A353389 %Y A353395 - recursive version A353393, counted by A353426 %Y A353395 Cf. A000005, A000961, A003586, A005117, A143773, A182850, A316428, A316438, A320325, A325131, A339095. %K A353395 nonn %O A353395 1,2 %A A353395 _Gus Wiseman_, May 17 2022