cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.

This page as a plain text file.
%I A353399 #5 May 20 2022 08:51:18
%S A353399 1,2,12,20,36,44,56,68,100,124,164,184,208,236,240,268,332,436,464,
%T A353399 484,508,528,608,628,688,716,720,752,764,776,816,844,880,964,1108,
%U A353399 1132,1156,1168,1200,1264,1296,1324,1344,1360,1412,1468,1488,1584,1604,1616,1724
%N A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices.
%C A353399 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A353399 We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.
%F A353399 A005361(a(n)) = A353394(a(n)).
%e A353399 The terms together with their prime indices begin:
%e A353399      1: {}
%e A353399      2: {1}
%e A353399     12: {1,1,2}
%e A353399     20: {1,1,3}
%e A353399     36: {1,1,2,2}
%e A353399     44: {1,1,5}
%e A353399     56: {1,1,1,4}
%e A353399     68: {1,1,7}
%e A353399    100: {1,1,3,3}
%e A353399    124: {1,1,11}
%e A353399    164: {1,1,13}
%e A353399    184: {1,1,1,9}
%e A353399    208: {1,1,1,1,6}
%e A353399    236: {1,1,17}
%e A353399    240: {1,1,1,1,2,3}
%t A353399 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A353399 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
%t A353399 Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&]
%Y A353399 Product of prime indices is A003963, counted by A339095.
%Y A353399 The LHS (product of exponents) is A005361, counted by A266477.
%Y A353399 The RHS (product of shadows) is A353394, first appearances A353397.
%Y A353399 A related comparison is A353395, counted by A353396.
%Y A353399 The partitions are counted by A353398.
%Y A353399 Taking indices instead of exponents on the LHS gives A353503.
%Y A353399 A001222 counts prime factors with multiplicity, distinct A001221.
%Y A353399 A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A353399 A124010 gives prime signature, sorted A118914.
%Y A353399 A130091 lists numbers with distinct prime exponents, counted by A098859.
%Y A353399 A181819 gives prime shadow, with an inverse A181821.
%Y A353399 A325131 lists numbers relatively prime to their prime shadow.
%Y A353399 Numbers divisible by their prime shadow:
%Y A353399 - counted by A325702
%Y A353399 - listed by A325755
%Y A353399 - co-recursive version A325756
%Y A353399 - nonprime recursive version A353389
%Y A353399 - recursive version A353393
%Y A353399 - recursive version counted by A353426
%Y A353399 Cf. A000720, A003586, A005117, A143773, A182850, A316428, A320325, A324850.
%K A353399 nonn
%O A353399 1,2
%A A353399 _Gus Wiseman_, May 17 2022