This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353399 #5 May 20 2022 08:51:18 %S A353399 1,2,12,20,36,44,56,68,100,124,164,184,208,236,240,268,332,436,464, %T A353399 484,508,528,608,628,688,716,720,752,764,776,816,844,880,964,1108, %U A353399 1132,1156,1168,1200,1264,1296,1324,1344,1360,1412,1468,1488,1584,1604,1616,1724 %N A353399 Numbers whose product of prime exponents equals the product of prime shadows of its prime indices. %C A353399 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A353399 We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12. %F A353399 A005361(a(n)) = A353394(a(n)). %e A353399 The terms together with their prime indices begin: %e A353399 1: {} %e A353399 2: {1} %e A353399 12: {1,1,2} %e A353399 20: {1,1,3} %e A353399 36: {1,1,2,2} %e A353399 44: {1,1,5} %e A353399 56: {1,1,1,4} %e A353399 68: {1,1,7} %e A353399 100: {1,1,3,3} %e A353399 124: {1,1,11} %e A353399 164: {1,1,13} %e A353399 184: {1,1,1,9} %e A353399 208: {1,1,1,1,6} %e A353399 236: {1,1,17} %e A353399 240: {1,1,1,1,2,3} %t A353399 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A353399 red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]]; %t A353399 Select[Range[100],Times@@red/@primeMS[#]==Times@@Last/@FactorInteger[#]&] %Y A353399 Product of prime indices is A003963, counted by A339095. %Y A353399 The LHS (product of exponents) is A005361, counted by A266477. %Y A353399 The RHS (product of shadows) is A353394, first appearances A353397. %Y A353399 A related comparison is A353395, counted by A353396. %Y A353399 The partitions are counted by A353398. %Y A353399 Taking indices instead of exponents on the LHS gives A353503. %Y A353399 A001222 counts prime factors with multiplicity, distinct A001221. %Y A353399 A056239 adds up prime indices, row sums of A112798 and A296150. %Y A353399 A124010 gives prime signature, sorted A118914. %Y A353399 A130091 lists numbers with distinct prime exponents, counted by A098859. %Y A353399 A181819 gives prime shadow, with an inverse A181821. %Y A353399 A325131 lists numbers relatively prime to their prime shadow. %Y A353399 Numbers divisible by their prime shadow: %Y A353399 - counted by A325702 %Y A353399 - listed by A325755 %Y A353399 - co-recursive version A325756 %Y A353399 - nonprime recursive version A353389 %Y A353399 - recursive version A353393 %Y A353399 - recursive version counted by A353426 %Y A353399 Cf. A000720, A003586, A005117, A143773, A182850, A316428, A320325, A324850. %K A353399 nonn %O A353399 1,2 %A A353399 _Gus Wiseman_, May 17 2022