This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353400 #10 May 17 2022 19:21:17 %S A353400 1,0,0,1,1,1,2,1,2,4,4,5,11,11,14,27,29,37,61,72,97,147,181,246,368, %T A353400 470,632,914,1198,1611,2286,3018,4079,5709,7619,10329,14333,19258, %U A353400 26142,36069,48688,66114,90800,122913,167020,228735,310167,421708,576499,782803 %N A353400 Number of integer compositions of n with all run-lengths > 2. %H A353400 Alois P. Heinz, <a href="/A353400/b353400.txt">Table of n, a(n) for n = 0..1000</a> %e A353400 The a(7) = 1 through a(12) = 11 compositions: %e A353400 1111111 2222 333 22222 1112222 444 %e A353400 11111111 111222 1111222 2222111 3333 %e A353400 222111 2221111 11111222 111333 %e A353400 111111111 1111111111 22211111 222222 %e A353400 11111111111 333111 %e A353400 11112222 %e A353400 22221111 %e A353400 111111222 %e A353400 111222111 %e A353400 222111111 %e A353400 111111111111 %p A353400 b:= proc(n, h) option remember; `if`(n=0, 1, add( %p A353400 `if`(i<>h, add(b(n-i*j, i), j=3..n/i), 0), i=1..n/3)) %p A353400 end: %p A353400 a:= n-> b(n, 0): %p A353400 seq(a(n), n=0..50); # _Alois P. Heinz_, May 17 2022 %t A353400 Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],!MemberQ[Length/@Split[#],1|2]&]],{n,0,15}] %Y A353400 The = 2 version is A003242 aerated. %Y A353400 The <= 1 version is A003242 ranked by A333489. %Y A353400 The version for parts instead of run-lengths is A078012, both A353428. %Y A353400 The version for partitions is A100405. %Y A353400 The > 1 version is A114901, ranked by A353427. %Y A353400 The <= 2 version is A128695, matching A335464. %Y A353400 A008466 counts compositions with some part > 2. %Y A353400 A011782 counts compositions. %Y A353400 A106356 counts compositions by number of adjacent equal parts. %Y A353400 A274174 counts compositions with equal parts contiguous. %Y A353400 A329738 counts uniform compositions, partitions A047966. %Y A353400 A329739 counts compositions with all distinct run-lengths. %Y A353400 Cf. A005811, A098859, A165413, A175413, A333755, A351013, A353390, A353391, A353401. %K A353400 nonn %O A353400 0,7 %A A353400 _Gus Wiseman_, May 15 2022 %E A353400 a(21)-a(49) from _Alois P. Heinz_, May 17 2022