This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353401 #9 May 18 2022 18:20:46 %S A353401 1,0,1,1,1,1,4,3,6,9,10,18,27,35,54,83,107,176,242,354,515,774,1070, %T A353401 1648,2332,3429,4984,7326,10521,15591,22517,32908,48048,70044,101903, %U A353401 149081,216973,316289,461959,672664,981356,1431256,2086901,3041577,4439226,6467735 %N A353401 Number of integer compositions of n with all prime run-lengths. %H A353401 Alois P. Heinz, <a href="/A353401/b353401.txt">Table of n, a(n) for n = 0..1000</a> %H A353401 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/87559">What is a sequence run? (answered 2011-12-01)</a> %e A353401 The a(0) = 1 through a(9) = 9 compositions (empty column indicated by dot, 0 is the empty composition): %e A353401 0 . 11 111 22 11111 33 11122 44 333 %e A353401 222 22111 1133 11133 %e A353401 1122 1111111 3311 33111 %e A353401 2211 11222 111222 %e A353401 22211 222111 %e A353401 112211 1111122 %e A353401 1112211 %e A353401 1122111 %e A353401 2211111 %p A353401 b:= proc(n, h) option remember; `if`(n=0, 1, add(`if`(i<>h, add( %p A353401 `if`(isprime(j), b(n-i*j, i), 0), j=2..n/i), 0), i=1..n/2)) %p A353401 end: %p A353401 a:= n-> b(n, 0): %p A353401 seq(a(n), n=0..60); # _Alois P. Heinz_, May 18 2022 %t A353401 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Length/@Split[#],_?(!PrimeQ[#]&)]&]],{n,0,15}] %Y A353401 The case of runs equal to 2 is A003242 aerated. %Y A353401 The <= 1 version is A003242 ranked by A333489. %Y A353401 The version for parts instead of run-lengths is A023360, both A353429. %Y A353401 The version for partitions is A055923. %Y A353401 The > 1 version is A114901, ranked by A353427. %Y A353401 The <= 2 version is A128695, matching A335464. %Y A353401 The > 2 version is A353400, partitions A100405. %Y A353401 Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351013, A351017. %Y A353401 A005811 counts runs in binary expansion. %Y A353401 A008466 counts compositions with some part > 2. %Y A353401 A011782 counts compositions. %Y A353401 A167606 counts compositions with adjacent parts coprime. %Y A353401 A329738 counts uniform compositions, partitions A047966. %Y A353401 Cf. A078012, A165413, A175413, A274174, A333381, A333755, A353390, A353391, A353392, A353402, A353403. %K A353401 nonn %O A353401 0,7 %A A353401 _Gus Wiseman_, May 15 2022 %E A353401 a(21)-a(45) from _Alois P. Heinz_, May 18 2022