A353402 Numbers k such that the k-th composition in standard order has its own run-lengths as a subsequence (not necessarily consecutive).
0, 1, 10, 21, 26, 43, 53, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 693, 696, 697, 698, 699, 804, 826, 858, 860, 861, 885, 954, 1082, 1141, 1173, 1210, 1338, 1353, 1387, 1392, 1393, 1394, 1396, 1397, 1398, 1466
Offset: 0
Keywords
Examples
The initial terms, their binary expansions, and the corresponding standard compositions: 0: 0 () 1: 1 (1) 10: 1010 (2,2) 21: 10101 (2,2,1) 26: 11010 (1,2,2) 43: 101011 (2,2,1,1) 53: 110101 (1,2,2,1) 58: 111010 (1,1,2,2) 107: 1101011 (1,2,2,1,1) 117: 1110101 (1,1,2,2,1) 174: 10101110 (2,2,1,1,2) 186: 10111010 (2,1,1,2,2) 292: 100100100 (3,3,3) 314: 100111010 (3,1,1,2,2) 346: 101011010 (2,2,1,2,2) 348: 101011100 (2,2,1,1,3) 349: 101011101 (2,2,1,1,2,1) 373: 101110101 (2,1,1,2,2,1) 430: 110101110 (1,2,2,1,1,2) 442: 110111010 (1,2,1,1,2,2)
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse; rosQ[y_]:=Length[y]==0||MemberQ[Subsets[y],Length/@Split[y]]; Select[Range[0,100],rosQ[stc[#]]&]
Comments