This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353418 #9 Apr 19 2022 22:45:30 %S A353418 1,0,0,-1,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,-1,0,0,0,0,-1,0, %T A353418 0,0,-1,0,1,0,0,-1,1,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,-1,0,-1,0,0,0,0,-1, %U A353418 0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1,0,-1,1,0,1,-1,0,0,-1,0,0,0,0,0,2 %N A353418 Dirichlet inverse of A353269. %H A353418 Antti Karttunen, <a href="/A353418/b353418.txt">Table of n, a(n) for n = 1..65537</a> %H A353418 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A353418 a(1) = 1; a(n) = -Sum_{d|n, d < n} A353269(n/d) * a(d). %F A353418 a(n) = A353419(n) - A353269(n). %F A353418 a(p) = 0 for all primes p. %F A353418 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1. %o A353418 (PARI) %o A353418 up_to = 65537; %o A353418 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v %o A353418 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A353418 A353269(n) = (!(A156552(n)%3)); %o A353418 v353418 = DirInverseCorrect(vector(up_to,n,A353269(n))); %o A353418 A353418(n) = v353418[n]; %Y A353418 Cf. A003961, A156552, A348717, A353269, A353419. %Y A353418 Cf. also A353348, A353422. %K A353418 sign %O A353418 1,100 %A A353418 _Antti Karttunen_, Apr 19 2022