cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353421 Dirichlet convolution of A353269 with A353348 (the Dirichlet inverse of A353350).

This page as a plain text file.
%I A353421 #9 Apr 19 2022 22:45:47
%S A353421 1,0,0,1,0,-1,0,-1,1,1,0,0,0,-1,-1,1,0,0,0,-1,1,1,0,-1,1,-1,-1,0,0,1,
%T A353421 0,-1,-1,1,-1,1,0,-1,1,1,0,0,0,-1,0,1,0,1,1,-1,-1,0,0,-1,1,-1,1,-1,0,
%U A353421 -2,0,1,-1,1,-1,1,0,-1,-1,0,0,-1,0,-1,0,0,-1,0,0,-2,1,1,0,2,1,-1,1,1,0,2,1,-1,-1,1,-1
%N A353421 Dirichlet convolution of A353269 with A353348 (the Dirichlet inverse of A353350).
%C A353421 Dirichlet convolution between this sequence and A353352 is A353362.
%H A353421 Antti Karttunen, <a href="/A353421/b353421.txt">Table of n, a(n) for n = 1..65537</a>
%H A353421 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A353421 a(n) = Sum_{d|n} A353269(n/d) * A353348(d).
%F A353421 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
%o A353421 (PARI)
%o A353421 up_to = 65537;
%o A353421 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
%o A353421 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A353421 A353350(n) = (0==(A048675(n)%3));
%o A353421 v353348 = DirInverseCorrect(vector(up_to,n,A353350(n)));
%o A353421 A353348(n) = v353348[n];
%o A353421 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A353421 A353269(n) = (!(A156552(n)%3));
%o A353421 A353421(n) = sumdiv(n,d,A353269(n/d)*A353348(d));
%Y A353421 Cf. A003961, A048675, A156552, A348717, A353269, A353350, A353348.
%Y A353421 Cf. A353422 (Dirichlet inverse).
%Y A353421 Cf. A353352, A353362.
%K A353421 sign
%O A353421 1,60
%A A353421 _Antti Karttunen_, Apr 19 2022