cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353422 Dirichlet convolution of A353350 with A353418 (the Dirichlet inverse of A353269).

This page as a plain text file.
%I A353422 #8 Apr 19 2022 22:45:43
%S A353422 1,0,0,-1,0,1,0,1,-1,-1,0,0,0,1,1,0,0,0,0,1,-1,-1,0,-1,-1,1,1,0,0,-1,
%T A353422 0,-1,1,-1,1,2,0,1,-1,1,0,0,0,1,0,-1,0,1,-1,1,1,0,0,-1,-1,-1,-1,1,0,
%U A353422 -2,0,-1,1,1,1,-1,0,1,1,0,0,-1,0,1,0,0,1,0,0,-2,0,-1,0,2,-1,1,-1,1,0,2,-1,1,1,-1,1,0
%N A353422 Dirichlet convolution of A353350 with A353418 (the Dirichlet inverse of A353269).
%C A353422 Dirichlet convolution between this sequence and A353362 is A353352.
%H A353422 Antti Karttunen, <a href="/A353422/b353422.txt">Table of n, a(n) for n = 1..65537</a>
%H A353422 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A353422 a(n) = Sum_{d|n} A353350(n/d) * A353418(d).
%F A353422 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
%o A353422 (PARI)
%o A353422 up_to = 65537;
%o A353422 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v
%o A353422 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A353422 A353350(n) = (0==(A048675(n)%3));
%o A353422 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A353422 A353269(n) = (!(A156552(n)%3));
%o A353422 v353418 = DirInverseCorrect(vector(up_to,n,A353269(n)));
%o A353422 A353418(n) = v353418[n];
%o A353422 A353422(n) = sumdiv(n,d,A353350(n/d)*A353418(d));
%Y A353422 Cf. A003961, A048675, A156552, A348717, A353269, A353350, A353418.
%Y A353422 Cf. A353421 (Dirichlet inverse).
%Y A353422 Cf. also A353352, A353362.
%K A353422 sign
%O A353422 1,36
%A A353422 _Antti Karttunen_, Apr 19 2022