This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353422 #8 Apr 19 2022 22:45:43 %S A353422 1,0,0,-1,0,1,0,1,-1,-1,0,0,0,1,1,0,0,0,0,1,-1,-1,0,-1,-1,1,1,0,0,-1, %T A353422 0,-1,1,-1,1,2,0,1,-1,1,0,0,0,1,0,-1,0,1,-1,1,1,0,0,-1,-1,-1,-1,1,0, %U A353422 -2,0,-1,1,1,1,-1,0,1,1,0,0,-1,0,1,0,0,1,0,0,-2,0,-1,0,2,-1,1,-1,1,0,2,-1,1,1,-1,1,0 %N A353422 Dirichlet convolution of A353350 with A353418 (the Dirichlet inverse of A353269). %C A353422 Dirichlet convolution between this sequence and A353362 is A353352. %H A353422 Antti Karttunen, <a href="/A353422/b353422.txt">Table of n, a(n) for n = 1..65537</a> %H A353422 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A353422 a(n) = Sum_{d|n} A353350(n/d) * A353418(d). %F A353422 a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1. %o A353422 (PARI) %o A353422 up_to = 65537; %o A353422 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v %o A353422 A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; %o A353422 A353350(n) = (0==(A048675(n)%3)); %o A353422 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A353422 A353269(n) = (!(A156552(n)%3)); %o A353422 v353418 = DirInverseCorrect(vector(up_to,n,A353269(n))); %o A353422 A353418(n) = v353418[n]; %o A353422 A353422(n) = sumdiv(n,d,A353350(n/d)*A353418(d)); %Y A353422 Cf. A003961, A048675, A156552, A348717, A353269, A353350, A353418. %Y A353422 Cf. A353421 (Dirichlet inverse). %Y A353422 Cf. also A353352, A353362. %K A353422 sign %O A353422 1,36 %A A353422 _Antti Karttunen_, Apr 19 2022