This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353428 #12 May 18 2022 13:33:42 %S A353428 1,0,0,0,0,0,0,0,0,1,0,0,2,0,0,2,1,0,2,0,2,4,0,0,8,3,0,10,4,4,15,4,8, %T A353428 24,7,8,42,16,10,59,31,27,87,37,52,149,62,66,233,121,111,342,207,204, %U A353428 531,308,351,864,487,536,1373,864,865,2057,1440,1509,3232 %N A353428 Number of integer compositions of n with all parts and all run-lengths > 2. %H A353428 Alois P. Heinz, <a href="/A353428/b353428.txt">Table of n, a(n) for n = 0..2000</a> %e A353428 The a(n) compositions for selected n: %e A353428 n=16: n=18: n=20: n=21: n=24: %e A353428 ---------------------------------------------------- %e A353428 (4444) (666) (5555) (777) (888) %e A353428 (333333) (44444) (333444) (6666) %e A353428 (444333) (333555) %e A353428 (3333333) (444444) %e A353428 (555333) %e A353428 (3333444) %e A353428 (4443333) %e A353428 (33333333) %p A353428 b:= proc(n, h) option remember; `if`(n=0, 1, add( %p A353428 `if`(i=h, 0, add(b(n-i*j, i), j=3..n/i)), i=3..n/3)) %p A353428 end: %p A353428 a:= n-> b(n, 0): %p A353428 seq(a(n), n=0..80); # _Alois P. Heinz_, May 18 2022 %t A353428 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1|2]&&!MemberQ[Length/@Split[#],1|2]&]],{n,0,15}] %Y A353428 Allowing any multiplicities gives A078012, partitions A008483. %Y A353428 The version for no (instead of all) parts or run-lengths > 2 is A137200. %Y A353428 Allowing any parts gives A353400, partitions A100405. %Y A353428 The version for partitions is A353501, ranked by A353502. %Y A353428 The version for > 1 instead of > 2 is A353508, partitions A339222. %Y A353428 A003242 counts anti-run compositions, ranked by A333489. %Y A353428 A008466 counts compositions with some part > 2. %Y A353428 A011782 counts compositions. %Y A353428 A114901 counts compositions with no runs of length 1, ranked by A353427. %Y A353428 A128695 counts compositions with no run-lengths > 2. %Y A353428 A261983 counts non-anti-run compositions. %Y A353428 A335464 counts compositions with a run-length > 2. %Y A353428 Cf. A032020, A044813, A098859, A165413, A318928, A329738, A329739, A333755, A353390, A353429. %K A353428 nonn %O A353428 0,13 %A A353428 _Gus Wiseman_, May 16 2022 %E A353428 a(26)-a(66) from _Alois P. Heinz_, May 17 2022