This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353430 #6 May 17 2022 07:24:58 %S A353430 1,1,1,1,2,1,3,1,1,4,5,7,9,11,15,16,22,25,37,37,45 %N A353430 Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted. %e A353430 The a(n) compositions for selected n (A..E = 10..14): %e A353430 n=4: n=6: n=9: n=10: n=12: n=14: %e A353430 ----------------------------------------------------------- %e A353430 (4) (6) (9) (A) (C) (E) %e A353430 (22) (1122) (333) (2233) (2244) (2255) %e A353430 (2211) (121122) (3322) (4422) (5522) %e A353430 (221121) (131122) (151122) (171122) %e A353430 (221131) (221124) (221126) %e A353430 (221142) (221135) %e A353430 (221151) (221153) %e A353430 (241122) (221162) %e A353430 (421122) (221171) %e A353430 (261122) %e A353430 (351122) %e A353430 (531122) %e A353430 (621122) %e A353430 (122121122) %e A353430 (221121221) %t A353430 yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]]; %t A353430 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yoyQ]],{n,0,15}] %Y A353430 Non-recursive non-consecutive version: counted by A353390, ranked by A353402, reverse A353403, partitions A325702. %Y A353430 Non-consecutive version: A353391, ranked by A353431, partitions A353426. %Y A353430 Non-recursive version: A353392, ranked by A353432. %Y A353430 A003242 counts anti-run compositions, ranked by A333489. %Y A353430 A011782 counts compositions. %Y A353430 A114901 counts compositions with no runs of length 1. %Y A353430 A169942 counts Golomb rulers, ranked by A333222. %Y A353430 A325676 counts knapsack compositions, ranked by A333223. %Y A353430 A329738 counts uniform compositions, partitions A047966. %Y A353430 A329739 counts compositions with all distinct run-lengths. %Y A353430 Cf. A005811, A032020, A103295, A114640, A165413, A242882, A325705, A333755, A351013, A353400, A353401. %K A353430 nonn,more %O A353430 0,5 %A A353430 _Gus Wiseman_, May 16 2022