A353431 Numbers k such that the k-th composition in standard order is empty, a singleton, or has its own run-lengths as a subsequence (not necessarily consecutive) that is already counted.
0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
Offset: 1
Keywords
Examples
The initial terms, their binary expansions, and the corresponding standard compositions: 0: 0 () 1: 1 (1) 2: 10 (2) 4: 100 (3) 8: 1000 (4) 10: 1010 (2,2) 16: 10000 (5) 32: 100000 (6) 43: 101011 (2,2,1,1) 58: 111010 (1,1,2,2) 64: 1000000 (7) 128: 10000000 (8) 256: 100000000 (9) 292: 100100100 (3,3,3) 349: 101011101 (2,2,1,1,2,1) 442: 110111010 (1,2,1,1,2,2) 512: 1000000000 (10) 586: 1001001010 (3,3,2,2) 676: 1010100100 (2,2,3,3) 697: 1010111001 (2,2,1,1,3,1)
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; rorQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&& rorQ[Length/@Split[y]]; Select[Range[0,100],rorQ[stc[#]]&]
Comments