A353432 Numbers k such that the k-th composition in standard order has its own run-lengths as a consecutive subsequence.
0, 1, 10, 21, 26, 43, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 696, 697, 804, 826, 860, 861, 885, 1082, 1141, 1173, 1210, 1338, 1387, 1392, 1393, 1394, 1396, 1594, 1653, 1700, 1720, 1721, 1882, 2106, 2165, 2186
Offset: 1
Keywords
Examples
The initial terms, their binary expansions, and the corresponding standard compositions: 0: 0 () 1: 1 (1) 10: 1010 (2,2) 21: 10101 (2,2,1) 26: 11010 (1,2,2) 43: 101011 (2,2,1,1) 58: 111010 (1,1,2,2) 107: 1101011 (1,2,2,1,1) 117: 1110101 (1,1,2,2,1) 174: 10101110 (2,2,1,1,2) 186: 10111010 (2,1,1,2,2) 292: 100100100 (3,3,3) 314: 100111010 (3,1,1,2,2) 346: 101011010 (2,2,1,2,2) 348: 101011100 (2,2,1,1,3) 349: 101011101 (2,2,1,1,2,1) 373: 101110101 (2,1,1,2,2,1) 430: 110101110 (1,2,2,1,1,2) 442: 110111010 (1,2,1,1,2,2)
Crossrefs
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; rorQ[y_]:=Length[y]==0||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]; Select[Range[0,10000],rorQ[stc[#]]&]
Comments