This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353435 #12 Apr 26 2022 10:23:23 %S A353435 1,1,1,1,1,1,1,2,1,1,1,2,4,0,1,1,4,4,4,0,1,1,2,16,0,4,0,1,1,6,4,48,0, %T A353435 0,0,1,1,4,36,0,144,0,0,0,1,1,6,16,180,0,320,0,0,0,1,1,4,36,0,900,0, %U A353435 720,0,0,0,1,1,10,16,108,0,3744,0,1312,0,0,0,1 %N A353435 Array read by descending antidiagonals: T(n,m) is the number of sequences of length n >= 0 with elements in 0..m-1 such that the Hankel matrix of any odd number of consecutive terms is invertible over the ring of integers modulo m >= 1. %C A353435 T(n,m) is divisible by T(2,m) = A127473(n) for n >= 2, because if r and s are coprime to m, the sequence (x_1, ..., x_n) satisfies the conditions if and only if the sequence (r*s^0*x_1 mod m, ..., r*s^(n-1)*x_n mod m) does. %F A353435 For fixed n, T(n,m) is multiplicative with T(n,p^e) = T(n,p)*p^(n*(e-1)). %F A353435 T(n,m) = A353436(n,m) if m is prime. %F A353435 T(3,m) = (m-1)^2*(m-2) = A045991(m-1) if m is prime. %F A353435 T(4,m) = (m-1)^2*(m-2)^2 = A035287(m-1) if m is prime. %F A353435 Empirically: T(5,m) = (m-1)^2*(m-3)*(m^2-4*m+5) if m >= 3 is prime. %F A353435 T(n,2) = 0 for n >= 3. %F A353435 T(n,3) = 0 for n >= 5. %F A353435 T(n,5) = 0 for n >= 23. %e A353435 Array begins: %e A353435 n\m| 1 2 3 4 5 6 7 8 9 10 %e A353435 ---+-------------------------------------- %e A353435 0 | 1 1 1 1 1 1 1 1 1 1 %e A353435 1 | 1 1 2 2 4 2 6 4 6 4 %e A353435 2 | 1 1 4 4 16 4 36 16 36 16 %e A353435 3 | 1 0 4 0 48 0 180 0 108 0 %e A353435 4 | 1 0 4 0 144 0 900 0 324 0 %e A353435 5 | 1 0 0 0 320 0 3744 0 0 0 %e A353435 6 | 1 0 0 0 720 0 15552 0 0 0 %e A353435 7 | 1 0 0 0 1312 0 54216 0 0 0 %e A353435 8 | 1 0 0 0 2400 0 189468 0 0 0 %e A353435 9 | 1 0 0 0 3232 0 550728 0 0 0 %e A353435 10 | 1 0 0 0 4560 0 1604088 0 0 0 %e A353435 11 | 1 0 0 0 4656 0 3895560 0 0 0 %e A353435 12 | 1 0 0 0 4928 0 9467856 0 0 0 %e A353435 13 | 1 0 0 0 4368 0 19185516 0 0 0 %Y A353435 Cf. A035287, A045991, A350364, A353433, A353436. %Y A353435 Rows: A000012 (n=0), A000010 (n=1), A127473 (n=2). %Y A353435 Columns: A000012 (m=1), A130716 (m=2), A166926 (m=4 and m=6). %K A353435 nonn,tabl %O A353435 0,8 %A A353435 _Pontus von Brömssen_, Apr 21 2022