This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353437 #15 Jul 01 2023 16:54:53 %S A353437 1,6,7,8,9,10,14,17,19,21,23,24,26,28,29,31,32,34,35,38,39,43,46,47, %T A353437 49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72, %U A353437 73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 %N A353437 Integers m such that the decimal expansion of 1/m contains the digit 1. %C A353437 If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms. %e A353437 m = 7 is a term since 1/7 = 0.142857142857... (here, 1 is the smallest digit). %e A353437 m = 17 is a term since 1/17 = 0.05882352941176470588235294117647... %e A353437 m = 99 is a term since 1/99 = 0.0101010101... (here, 1 is the largest digit). %t A353437 f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 125, MemberQ[f@#, 1] &] %Y A353437 A333402 (largest digit=1) and A352155 (smallest digit=1) are subsequences. %Y A353437 Similar with digit k: A352154 (k=0), this sequence (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), A353441 (k=5), A353442 (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9). %K A353437 base,nonn %O A353437 1,2 %A A353437 _Bernard Schott_ and _Robert G. Wilson v_, Apr 19 2022