cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353460 Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases).

This page as a plain text file.
%I A353460 #10 Apr 20 2022 22:48:39
%S A353460 1,0,-1,0,-1,0,-1,0,-2,0,-2,0,-2,0,-1,0,-3,0,-3,0,-2,0,-4,0,-1,0,-4,0,
%T A353460 -5,0,-5,0,-3,0,1,0,-6,0,-4,0,-7,0,-7,0,0,0,-8,0,-4,0,-5,0,-9,0,3,0,
%U A353460 -6,0,-10,0,-10,0,-1,0,2,0,-11,0,-7,0,-12,0,-12,0,-3,0,1,0,-13,0,-8,0,-14,0,4,0,-9,0,-15,0,0,0
%N A353460 Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases).
%C A353460 Taking the Dirichlet convolution between this sequence and A349371 gives A349393, and similarly for many other such analogous pairs.
%H A353460 Antti Karttunen, <a href="/A353460/b353460.txt">Table of n, a(n) for n = 1..65537</a>
%F A353460 a(n) = Sum_{d|n} A126760(d) * A349134(n/d).
%o A353460 (PARI)
%o A353460 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A353460 A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
%o A353460 memoA349134 = Map();
%o A353460 A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d<n,A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v)));
%o A353460 A353460(n) = sumdiv(n,d,A126760(d)*A349134(n/d));
%Y A353460 Cf. A003602, A126760, A349134, A353461 (Dirichlet inverse), A353462 (sum with it).
%Y A353460 Cf. also A349371, A349380, A349393, A349432.
%K A353460 sign
%O A353460 1,9
%A A353460 _Antti Karttunen_, Apr 20 2022