This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353460 #10 Apr 20 2022 22:48:39 %S A353460 1,0,-1,0,-1,0,-1,0,-2,0,-2,0,-2,0,-1,0,-3,0,-3,0,-2,0,-4,0,-1,0,-4,0, %T A353460 -5,0,-5,0,-3,0,1,0,-6,0,-4,0,-7,0,-7,0,0,0,-8,0,-4,0,-5,0,-9,0,3,0, %U A353460 -6,0,-10,0,-10,0,-1,0,2,0,-11,0,-7,0,-12,0,-12,0,-3,0,1,0,-13,0,-8,0,-14,0,4,0,-9,0,-15,0,0,0 %N A353460 Dirichlet convolution of A126760 with A349134 (the Dirichlet inverse of Kimberling's paraphrases). %C A353460 Taking the Dirichlet convolution between this sequence and A349371 gives A349393, and similarly for many other such analogous pairs. %H A353460 Antti Karttunen, <a href="/A353460/b353460.txt">Table of n, a(n) for n = 1..65537</a> %F A353460 a(n) = Sum_{d|n} A126760(d) * A349134(n/d). %o A353460 (PARI) %o A353460 A003602(n) = (1+(n>>valuation(n,2)))/2; %o A353460 A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760 %o A353460 memoA349134 = Map(); %o A353460 A349134(n) = if(1==n,1,my(v); if(mapisdefined(memoA349134,n,&v), v, v = -sumdiv(n,d,if(d<n,A003602(n/d)*A349134(d),0)); mapput(memoA349134,n,v); (v))); %o A353460 A353460(n) = sumdiv(n,d,A126760(d)*A349134(n/d)); %Y A353460 Cf. A003602, A126760, A349134, A353461 (Dirichlet inverse), A353462 (sum with it). %Y A353460 Cf. also A349371, A349380, A349393, A349432. %K A353460 sign %O A353460 1,9 %A A353460 _Antti Karttunen_, Apr 20 2022