cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353461 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A323881 (the Dirichlet inverse of A126760).

This page as a plain text file.
%I A353461 #15 Jul 08 2022 21:40:18
%S A353461 1,0,1,0,1,0,1,0,3,0,2,0,2,0,3,0,3,0,3,0,4,0,4,0,2,0,9,0,5,0,5,0,7,0,
%T A353461 1,0,6,0,8,0,7,0,7,0,9,0,8,0,5,0,11,0,9,0,1,0,12,0,10,0,10,0,12,0,2,0,
%U A353461 11,0,15,0,12,0,12,0,10,0,3,0,13,0,27,0,14,0,2,0,19,0,15,0,4,0,20,0,3,0,16,0,21
%N A353461 Dirichlet convolution of A003602 (Kimberling's paraphrases) with A323881 (the Dirichlet inverse of A126760).
%C A353461 Taking the Dirichlet convolution between this sequence and A349393 gives A349371, and similarly for many other such analogous pairs.
%H A353461 Antti Karttunen, <a href="/A353461/b353461.txt">Table of n, a(n) for n = 1..65537</a>
%F A353461 a(n) = Sum_{d|n} A003602(d) * A323881(n/d).
%F A353461 a(n) = A353462(n) - A353460(n).
%o A353461 (PARI)
%o A353461 up_to = 65537;
%o A353461 A003602(n) = (1+(n>>valuation(n,2)))/2;
%o A353461 A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
%o A353461 DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v
%o A353461 v323881 = DirInverseCorrect(vector(up_to,n,A126760(n)));
%o A353461 A323881(n) = v323881[n];
%o A353461 A353461(n) = sumdiv(n,d,A003602(d)*A323881(n/d));
%Y A353461 Cf. A003602, A126760, A323881, A353460 (Dirichlet inverse), A353462 (sum with it).
%Y A353461 Cf. also A349371, A349393.
%K A353461 sign
%O A353461 1,9
%A A353461 _Antti Karttunen_, Apr 20 2022