cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353490 The largest proper divisor of n, reduced modulo 4, with a(1) = 1.

This page as a plain text file.
%I A353490 #13 Apr 26 2022 07:10:46
%S A353490 1,1,1,2,1,3,1,0,3,1,1,2,1,3,1,0,1,1,1,2,3,3,1,0,1,1,1,2,1,3,1,0,3,1,
%T A353490 3,2,1,3,1,0,1,1,1,2,3,3,1,0,3,1,1,2,1,3,3,0,3,1,1,2,1,3,1,0,1,1,1,2,
%U A353490 3,3,1,0,1,1,1,2,3,3,1,0,3,1,1,2,1,3,1,0,1,1,1,2,3,3,3,0,1,1,1,2,1,3,1,0,3
%N A353490 The largest proper divisor of n, reduced modulo 4, with a(1) = 1.
%H A353490 Antti Karttunen, <a href="/A353490/b353490.txt">Table of n, a(n) for n = 1..65537</a>
%F A353490 a(n) = A010873(A032742(n)).
%o A353490 (PARI)
%o A353490 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A353490 A353490(n) = (A032742(n)%4);
%o A353490 (Python)
%o A353490 from sympy import factorint
%o A353490 def a(n): return 1 if n==1 else (n//min(factorint(n)))%4
%o A353490 print([a(n) for n in range(1, 106)]) # _Michael S. Branicky_, Apr 26 2022
%Y A353490 Cf. A032742, A353491, A353492.
%K A353490 nonn
%O A353490 1,4
%A A353490 _Antti Karttunen_, Apr 22 2022