cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353503 Numbers whose product of prime indices equals their product of prime exponents (prime signature).

This page as a plain text file.
%I A353503 #10 May 20 2022 10:18:20
%S A353503 1,2,12,36,40,112,352,832,960,1296,2176,2880,4864,5376,11776,12544,
%T A353503 16128,29696,33792,34560,38400,63488,64000,101376,115200,143360,
%U A353503 151552,159744,335872,479232,704512,835584,1540096,1658880,1802240
%N A353503 Numbers whose product of prime indices equals their product of prime exponents (prime signature).
%C A353503 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A number's prime signature (row n A124010) is the sequence of positive exponents in its prime factorization.
%F A353503 A003963(a(n)) = A005361(a(n)).
%e A353503 The terms together with their prime indices begin:
%e A353503      1: {}
%e A353503      2: {1}
%e A353503     12: {1,1,2}
%e A353503     36: {1,1,2,2}
%e A353503     40: {1,1,1,3}
%e A353503    112: {1,1,1,1,4}
%e A353503    352: {1,1,1,1,1,5}
%e A353503    832: {1,1,1,1,1,1,6}
%e A353503    960: {1,1,1,1,1,1,2,3}
%e A353503   1296: {1,1,1,1,2,2,2,2}
%e A353503   2176: {1,1,1,1,1,1,1,7}
%e A353503   2880: {1,1,1,1,1,1,2,2,3}
%e A353503   4864: {1,1,1,1,1,1,1,1,8}
%e A353503   5376: {1,1,1,1,1,1,1,1,2,4}
%t A353503 Select[Range[1000],Times@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]^k]==Times@@Last/@FactorInteger[#]&]
%o A353503 (Python)
%o A353503 from itertools import count, islice
%o A353503 from math import prod
%o A353503 from sympy import primepi, factorint
%o A353503 def A353503_gen(startvalue=1): # generator of terms >= startvalue
%o A353503     return filter(lambda n: n == 1 or prod((f:=factorint(n)).values()) == prod(primepi(p)**e for p,e in f.items()), count(max(startvalue,1)))
%o A353503 A353503_list = list(islice(A353503_gen(),20)) # _Chai Wah Wu_, May 20 2022
%Y A353503 For shadows instead of exponents we get A003586, counted by A008619.
%Y A353503 The LHS (product of prime indices) is A003963, counted by A339095.
%Y A353503 The RHS (product of prime exponents) is A005361, counted by A266477.
%Y A353503 The version for shadows instead of indices is A353399, counted by A353398.
%Y A353503 These partitions are counted by A353506.
%Y A353503 A001222 counts prime factors with multiplicity, distinct A001221.
%Y A353503 A056239 adds up prime indices, row sums of A112798 and A296150.
%Y A353503 A130091 lists numbers with distinct prime exponents, counted by A098859.
%Y A353503 A124010 gives prime signature, sorted A118914.
%Y A353503 A181819 gives prime shadow, with an inverse A181821.
%Y A353503 A353394 gives product of shadows of prime indices, firsts A353397.
%Y A353503 Cf. A000720, A008480, A085629, A097318, A109297, A304678, A318871, A320325, A325131, A325755, A353500, A353507.
%K A353503 nonn
%O A353503 1,2
%A A353503 _Gus Wiseman_, May 17 2022