This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353506 #12 May 20 2022 08:50:53 %S A353506 1,1,0,0,1,0,2,0,1,0,1,1,2,1,2,0,3,3,2,3,2,0,2,3,2,1,3,1,6,3,2,3,3,2, %T A353506 3,4,1,2,3,6,3,2,2,3,3,1,2,6,6,4,7,2,3,6,4,3,3,0,4,5,3,5,5,6,5,3,3,3, %U A353506 6,5,5,6,6,3,3,3,4,4,4,6,7,2,5,7,6,2,3,4,6,11,9,4,4,1,5,6,4,7,9,6,4 %N A353506 Number of integer partitions of n whose parts have the same product as their multiplicities. %e A353506 The a(0) = 1 through a(18) = 2 partitions: %e A353506 n= 0: () %e A353506 n= 1: (1) %e A353506 n= 2: %e A353506 n= 3: %e A353506 n= 4: (211) %e A353506 n= 5: %e A353506 n= 6: (3111) (2211) %e A353506 n= 7: %e A353506 n= 8: (41111) %e A353506 n= 9: %e A353506 n=10: (511111) %e A353506 n=11: (32111111) %e A353506 n=12: (6111111) (22221111) %e A353506 n=13: (322111111) %e A353506 n=14: (71111111) (4211111111) %e A353506 n=15: %e A353506 n=16: (811111111) (4411111111) (42211111111) %e A353506 n=17: (521111111111) (332111111111) (322211111111) %e A353506 n=18: (9111111111) (333111111111) %e A353506 For example, the partition y = (322111111) has multiplicities (1,2,6) with product 12, and the product of parts is also 3*2*2*1*1*1*1*1*1 = 12, so y is counted under a(13). %t A353506 Table[Length[Select[IntegerPartitions[n], Times@@#==Times@@Length/@Split[#]&]],{n,0,30}] %o A353506 (PARI) a(n) = {my(nb=0); forpart(p=n, my(s=Set(p), v=Vec(p)); if (vecprod(vector(#s, i, #select(x->(x==s[i]), v))) == vecprod(v), nb++);); nb;} \\ _Michel Marcus_, May 20 2022 %Y A353506 LHS (product of parts) is ranked by A003963, counted by A339095. %Y A353506 RHS (product of multiplicities) is ranked by A005361, counted by A266477. %Y A353506 For shadows instead of prime exponents we have A008619, ranked by A003586. %Y A353506 Taking sum instead of product of parts gives A266499. %Y A353506 For shadows instead of prime indices we have A353398, ranked by A353399. %Y A353506 These partitions are ranked by A353503. %Y A353506 Taking sum instead of product of multiplicities gives A353698. %Y A353506 A008284 counts partitions by length. %Y A353506 A098859 counts partitions with distinct multiplicities, ranked by A130091. %Y A353506 A353507 gives product of multiplicities (of exponents) in prime signature. %Y A353506 Cf. A085629, A114640, A116608, A118914, A124010, A319000, A325702, A353394, A353500. %Y A353506 Cf. A000792, A266480. %K A353506 nonn %O A353506 0,7 %A A353506 _Gus Wiseman_, May 17 2022 %E A353506 a(71)-a(100) from _Alois P. Heinz_, May 20 2022