This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353526 #14 Jul 25 2022 22:41:55 %S A353526 2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,3,2,3,2,3, %T A353526 2,1,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,3,2,3,2,3,2,1,2,3, %U A353526 2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2,3,2,3,2,3,2,3,2,1,2,3,2,3,2,1,2,3,2 %N A353526 The smallest prime not dividing n, reduced modulo 4. %H A353526 Antti Karttunen, <a href="/A353526/b353526.txt">Table of n, a(n) for n = 1..65537</a> %F A353526 a(n) = A010873(A053669(n)). %F A353526 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} ((p mod 4)*(p-1)/(Product_{q prime, q <= p} q)) = 2.2324714414... . - _Amiram Eldar_, Jul 25 2022 %t A353526 a[n_] := Module[{p = 2}, While[Divisible[n, p], p = NextPrime[p]]; Mod[p, 4]]; Array[a, 100] (* _Amiram Eldar_, Jul 25 2022 *) %o A353526 (PARI) %o A353526 A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669 %o A353526 A353526(n) = (A053669(n)%4); %Y A353526 Cf. A010873, A053669, A353486, A353516, A353528, A353529. %Y A353526 Cf. A007395, A353527 (bisections). %K A353526 nonn %O A353526 1,1 %A A353526 _Antti Karttunen_, Apr 24 2022