This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A353527 #14 Jul 25 2022 22:41:59 %S A353527 3,3,1,3,3,1,3,3,1,3,3,1,3,3,3,3,3,1,3,3,1,3,3,1,3,3,1,3,3,3,3,3,1,3, %T A353527 3,1,3,3,1,3,3,1,3,3,3,3,3,1,3,3,1,3,3,1,3,3,1,3,3,3,3,3,1,3,3,1,3,3, %U A353527 1,3,3,1,3,3,3,3,3,1,3,3,1,3,3,1,3,3,1,3,3,3,3,3,1,3,3,1,3,3,1,3,3,1,3,3,3 %N A353527 The smallest prime not dividing 2*n, reduced modulo 4. %H A353527 Antti Karttunen, <a href="/A353527/b353527.txt">Table of n, a(n) for n = 1..65537</a> %F A353527 a(n) = A353526(2*n) = A010873(A053669(2*n)). %F A353527 For n >= 1, a(n) = (A353487(n) * A353517(n)) mod 4. %F A353527 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime > 2} ((p mod 4)*(p-1)/(Product_{q prime, q <= p} q)) = 2.4649428829... . - _Amiram Eldar_, Jul 25 2022 %t A353527 a[n_] := Module[{p = 2}, While[Divisible[2*n, p], p = NextPrime[p]]; Mod[p, 4]]; Array[a, 100] (* _Amiram Eldar_, Jul 25 2022 *) %o A353527 (PARI) %o A353527 A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669 %o A353527 A353527(n) = (A053669(2*n)%4); %Y A353527 Bisection of A353526. %Y A353527 Cf. A010873, A053669, A353487, A353517, A353528, A353529. %K A353527 nonn %O A353527 1,1 %A A353527 _Antti Karttunen_, Apr 24 2022