cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.

This page as a plain text file.
%I A353532 #28 Jun 09 2022 11:40:50
%S A353532 0,0,0,0,3,1,1,7,12,11,1,11,26,52,40,4,23,50,94,147,105,4,30,69,127,
%T A353532 198,301,190,10,49,103,192,302,444,583,379,10,58,127,244,387,576,754,
%U A353532 1039,616,18,84,180,329,509,756,989,1334,1680,987,18,94,209,389,611,910,1203,1618,2052,2581,1426
%N A353532 T(n,m) is the number of non-congruent quadrilaterals with integer vertex coordinates (x1,1), (n,y2), (x3,m), (1,y4), 1 < x1, x3 < n, 1 < y2, y4 < m, m <= n, such that the 6 distances between the 4 vertices are distinct.
%C A353532 T(n,m) is a triangle, read by rows.
%H A353532 Rainer Rosenthal, <a href="/A353532/b353532.txt">Rows n = 3..100, flattened</a>
%H A353532 Hugo Pfoertner, <a href="/A353532/a353532.gp.txt">PARI program</a>
%e A353532 The triangle begins
%e A353532     \ m 3   4    5    6    7    8    9   10
%e A353532    n \-------------------------------------
%e A353532    3 |  0,  |    |    |    |    |    |    |
%e A353532    4 |  0,  0,   |    |    |    |    |    |
%e A353532    5 |  0,  3,   1,   |    |    |    |    |
%e A353532    6 |  1,  7,  12,  11,   |    |    |    |
%e A353532    7 |  1, 11,  26,  52,  40,   |    |    |
%e A353532    8 |  4, 23,  50,  94, 147, 105,   |    |
%e A353532    9 |  4, 30,  69, 127, 198, 301, 190,   |
%e A353532   10 | 10, 49, 103, 192, 302, 444, 583, 379
%e A353532 .
%e A353532 .
%e A353532    4 | . C . . .    There are six squared distances.
%e A353532    3 | . . . . .    They are arranged as follows:
%e A353532    2 | D . . . B      AB-BC-CD-DA  (counterclockwise)
%e A353532    1 | . A . . .      AC X DB      (across)
%e A353532    y /----------    Here: AB = 3^2 + 1^2 = 10,
%e A353532      x 1 2 3 4 5          BC = 13, CD = 5, DA = 2,
%e A353532 .                         AC =  9, DB = 16
%e A353532       10-13-5-2  <==== yielding this
%e A353532       9 X 16     <==== description
%e A353532 .
%e A353532 .
%e A353532 T(5,4) = a(5) = 3:
%e A353532 .
%e A353532    4 | . X . . .     4 | . X . . .     4 | . . X . .
%e A353532    3 | . . . . .     3 | . . . . X     3 | . . . . X
%e A353532    2 | X . . . X     2 | X . . . .     2 | X . . . .
%e A353532    1 | . X . . .     1 | . X . . .     1 | . X . . .
%e A353532    y /----------     y /----------     y /----------
%e A353532      x 1 2 3 4 5       x 1 2 3 4 5       x 1 2 3 4 5
%e A353532 .
%e A353532       10-13-5-2          13-10-5-2          13-5-8-2
%e A353532       9 X 16             9 X 17             10 X 17
%e A353532 .
%e A353532 T(5,5) = a(6) = A353447(5) = 1:
%e A353532 .
%e A353532    5 | . . . X .
%e A353532    4 | . . . . .
%e A353532    3 | . . . . X    13-5-18-2
%e A353532    2 | X . . . .    20 X 17
%e A353532    1 | . X . . .
%e A353532    y /----------
%e A353532      x 1 2 3 4 5
%e A353532 .
%e A353532 T(6,3) = a(7) = 1:
%e A353532 .
%e A353532    3 | . . . X . .
%e A353532    2 | X . . . . X    17-5-10-2
%e A353532    1 | . X . . . .    8 X 25
%e A353532    y /------------
%e A353532      x 1 2 3 4 5 6
%e A353532 .
%e A353532 T(6,4) = a(8) = 7:
%e A353532 .
%e A353532    4 | . X . . . .   4 | . X . . . .   4 | . . X . . .   4 | . . . X . .
%e A353532    3 | . . . . . .   3 | . . . . . X   3 | . . . . . .   3 | X . . . . .
%e A353532    2 | X . . . . X   2 | X . . . . .   2 | X . . . . X   2 | . . . . . X
%e A353532    1 | . X . . . .   1 | . X . . . .   1 | . X . . . .   1 | . X . . . .
%e A353532    y /------------   y /------------   y /------------   y /------------
%e A353532      x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
%e A353532 .
%e A353532        17-20-5-2         20-17-5-2         17-13-8-2         17-8-10-5
%e A353532        9 X 25            9 X 26            10 X 25           13 X 26
%e A353532 .
%e A353532    4 | . . . . X .   4 | . . X . . .   4 | . . X . . .
%e A353532    3 | . . . . . .   3 | . . . . . .   3 | . . . . . X
%e A353532    2 | X . . . . X   2 | X . . . . X   2 | X . . . . .
%e A353532    1 | . X . . . .   1 | . . X . . .   1 | . . X . . .
%e A353532    y /------------   y /------------   y /------------
%e A353532      x 1 2 3 4 5 6     x 1 2 3 4 5 6     x 1 2 3 4 5 6
%e A353532 .
%e A353532        17-5-20-2         10-13-8-5         13-10-8-5
%e A353532        18 X 25           9 X 25            9 X 26
%e A353532 .
%o A353532 (PARI) see Pfoertner link.
%Y A353532 Cf. A353447 (diagonal), A353449, A353450, A353451, A353533, A354700.
%Y A353532 The general case without excluding the corners of the grid rectangle is covered in A354700 and A354701.
%K A353532 nonn,tabl
%O A353532 3,5
%A A353532 _Hugo Pfoertner_ and _Rainer Rosenthal_, May 02 2022